欢迎来到61范文网!
您现在的位置:首页 > 工作文档 > 工作总结

数据员个人工作总结4篇 数据员工作总结怎么写

时间:2024-03-31 20:27:35 工作总结

  通过写工作总结可以提升自己的工作效率,这样才是最有价值的总结,那么写工作总结应该注意什么要点呢?下面是范文网小编分享的数据员个人工作总结4篇 数据员工作总结怎么写,欢迎参阅。

数据员个人工作总结4篇 数据员工作总结怎么写

数据员个人工作总结1

  一、日常工作

  在xx年上半年,从总体来讲,日常的数据采集依然占据了很大的比重。在数据录入方面,我依然严格要求自己,在保证速度的同时做到准确录入。在上半年,我参与了第一季度数据报告以及5月份月报的撰写,虽然是常规数据报告,我依然不敢松懈,尽力做到一遍通过,不犯低级错误。

  另外,在日常工作之余,也向周xx学习了专刊考核方面的工作。考核工作对我来说并不陌生,因为以前曾经也接触过,考核规则简化之后,上手更加容易。主要是做到耐心细致就不会出错。

  那么,本年度除日常工作外,应中心领导要求,每日由广告部渠道组提供当日未到达名单,由李xx和我轮流在系统中查询最后一次投放本报的时间。广告部渠道组提供名单并不细致,加大了查询工作的难度,希望日后通过有效的交流和沟通,双方可以达成统一,提高工作效率。

  二、调研项目

  人才招聘行业调研报告:年初,在报社领导的指示下,我和祁xx共同完成了人才招聘行业的专项调研报告。本次报告通过对全国人才招聘行业的仔细研究,包括全国媒体人才招聘广告投放情况与沈阳地区媒体投放对比分析,沈阳地区自身招聘行业的特点以及报纸、网络、人才市场等多个方面的深入分析,在金融危机的影响下,对xx年招聘行业情况做出了有预见性的预测,并验证了领导的想法。通过撰写此次报告,使我的思路更加开阔,学到了很多东西,也掌握了一些撰写专项分析报告的技巧,对我日后撰写某个行业的专项报告有一定的帮助。在这里感谢主任对我和祁xx的信任和指导。

  xxxx电器调研项目:4月份,在领导的指示下,我们与xxxx电器一起合作了一次关于家电行业的调研活动。本次调研方式为街头拦访。关于问卷,个人认为,由于街头拦访形式比较特殊,被访者是在行走过程中,问卷题目应该尽量短小简单。本次问卷题目一共26道题目,包括单选、多选以及复合题目,a4纸打印需要三张。在访问过程中,感觉有些繁琐冗长。被访者大多觉得题目较多,一张问卷访问下来,大约需要10分钟的时间。就日后的调研来看,个人认为,街头拦访问卷一般题目在10—20个问题,a4纸打印2张,访问时间控制在5—8分钟左右为宜。过长会导致被访者的厌烦情绪,在问卷的最后容易随便糊弄了事,影响调研的准确性。虽然调研中有这样和那样的困难,但经过全体项目人员的努力,本次调研项目执行到位,保质保量的完成了任务,达到预期要求。

  版面监测调研:4月份,与xxxx市场研究公司合作开展了“xx年第一期版面监测调研项目”。针对项目执行过程中的各个环节严格把关,务求使版面调研数据的真实准确。并在6月初召开了报告讲解会。本次报告在原有基础上增加了定性研究与版面的直观对比,对各部们领导解读报告起到一定的作用。

  客户满意度调研:6月末,在集团要求下,和祁xx一起完成了《xx年上半年客户满意度调研报告》,为经营工作考核提供了一定的数据依据。

  发行调研:在xx年初,发行调研已经全部由市场部独立进行,每月进行一周。虽然人员有限,但市场部人员尽出,保证了发行调研的按期进行。就发行调研本身来说,个人认为,由于选择摊点过少,每期报告不免单调重复,在xx年下半年应当改进调研方式,不再单纯进行要报销报的数量,要在原有基础上有计划的进行较为深入的调研。这样可以使得发行调研更加具有指导意义。

  三、活动配合与外出培训

  在上半年,市场部配合房产专刊部进行了“购房消费卷”活动,在活动结束之后,为领导撰写了《春暖花开购房消费卷报告》,报告以漫画等幽默的方式展示了华商晨报“购房消费卷活动”,并对其他媒体在房产行业方面的政策以及地产商投放广告心态进行了分析,得到了领导的认可。

  另外,在5月末,在中心领导的指示下,深入研究了xxxx活动,在查阅了大量资料,并在部门主任的指导下,撰写了《xxxxxxxx》活动策划报告。通过此次报告的撰写,让我自己所从事的工作的认识更加深刻,了解到自己的工作思路要依据数据而不局限于数据。作为市场部的一员,我要更加鞭策自己,拓展自己的思路与眼界,放眼市场放眼全局。

  在5月,我有幸赴北京参加了“市场研究基础知识培训”。本次培训主要是数据基础分析与处理,在介绍了我们日常工作常用软件execl的同时,讲解了专业的数据统计软件spss的基础操作。这次学习机会对我来说相当珍贵,而这次培训也对我日后的工作有了很大的帮助,希望在接下来慧聪所举办的一系列培训中依然可以去学习参加,提高自己的分析水平,业务能力。

  四、展望

  从事数据工作已经是第四个年头了,各类调研项目也开展了很多,如何在数据分析与调查研究中更加深造自己,将是我xx年下半年的工作重点。

  我想,下半年的工作中,除了进行各种调研项目意外,也要在撰写各种常规数据报告的同时适当的进行专一行业的深度分析研究。

数据员个人工作总结2

  一缕春风溢满了我们数据部每角落,不知不觉中已经来我们公司有一年多了,我任职数据部一名数据统计员,每一项工作都与业务部有相连,跟进业务部日常行程、每天销售业绩、发生意销售、目标及占比跌幅店铺信息、物料赞助跟进等等就是我的工作。在婷姐的带领下和诸位同事的合作中学到很多东西,慢慢的全面把握了公司的数据准确性和保密性,这对我的职业生涯具有非凡意义,使我打下了坚实的基础。

  回顾这一年多时间,工作经验、社会交流等等一切都是从头开始,从无到有,从有到会,从会到熟;这一过程都离不开公司领导的带领和个人的努力,这一年是感恩的一年,真心感谢公司给我提供磨练自己的机会,更感谢公司领导一直以来对我的信任与栽培! 渐渐的,我体会到和摸索出一些总结和感想。

  总结: 一.团队的合作是完成工作的前提。做一份能令领导满意的数据表格不单单是自己一个人闭门造车所能造出来的,需要合理的意见和适当的帮助,自己的制表思路是要在前人的启发下才能发挥出色。

  二.精准的数据需要懂得数据的理念和要求,数据的运用。做数据表格是给人一种一目了然的清晰感,怎样把公司的数据信息及时传达公司领导、客户及客户主任尤为重要。准确的数据表格是给领导和客户的第一印象,是直接影响整份表格的进度。信息是及时、全面反映整个企业的精神面貌和工作动态,这就要求及时,迅速,对各部门上报的信息进行整理、加工,对发生的大事对各部门进行催报,使信息管理工作更加规范到位。

  三.善于总结,懂得吸取经验。经验是在实际工作在中得到的,把握了经验工作自然就是事半功倍。刚开始做数据表格时,只知道一味的按部就班,缺少灵活性,表格表达不清晰。后来经过不断的摸索,领悟到表格有很多功能是值得我们去参谋的,运用vlookup,sumif等常用公式,让自己变得灵活而具有战斗力。表达最美的效果,这种感觉是要在长期的工作经验中积累起来的。

  四.善于沟通,避免出错。做数据表格是在第一份原始资料的基础上做出来的,第一份原始资料就是小马做的数据报表,做数据时遇到什么不明白的需请教,因此信息传递是很重要的,我们要保持信息的畅通性就必须善于沟通,否则出现差错,前功尽弃。所以,一边工作一边总结经验是百利而无一害的。 五.做数据表格要讲究效率和准确。数据的作用是给他人能够更快的看清楚所表达的数据内容,还有重要的是数据准确性及美观,给人一种赏心悦目,心旷神怡的舒服感,具有挑战性的是有一种感觉,就是一眼就分辨得出哪里好,哪里需要改进,哪里需要取。

  感想: 一:数据部是实现自己理想和展现自己技能的平台。能把自己所学知识运用出来是一件值得庆幸的事,安分守己,把自己的工作出色完成对公司是一种责任,对自己是一种交代。

  二.认识了很多新同事,交流广泛,知识面丰富了。新的环境必然有新的事物,接收新的事物必然有新的认识,新的认识必然有新的数据理念思想,对自己的专业知识和认识更上一层楼。

  三.去旧迎新,迎接新的挑战,自我提升,给自己定下目标。20xx年是奋斗的一年,一年可以实现很多事情,可以改变很多事情,是选择继续奋斗还是碌碌无为,关键在于自己的行动。只有行动万事皆成事实。

  所以我给自己定下了三个目标:1.全面提升自己,工作能独当一面。这样就能提高工作效率,不会延误工作进度。

  2数据能精确化,提高效率。

  3.保持一颗上进心,永不熄灭。

  最后,祝愿大家新春如意,事业有成,开开心心过一个好年。

数据员个人工作总结3

  在过去的一年里,我在领导、同事们的支持和帮助下,用自己所学知识,在自己的工作岗位上,尽职尽责,较好的完成了各项工作任务。为公司做出了应有的贡献。同时,身为一名化验员我也在从思想到行动,从理论到实践,进一步学习,提高自己的工作水平。现将本人本年度工作总结如下:

  一、努力学习,完善自我:随—着公司的发展,实验室仪器的增加

  为了更好的完成工作,在之前的工作基础之上,又学习了水中油含量、柴油烃类组成(稀释法)、hcl的测定等新的'实验方法,并且熟练掌握,较好的完成了相关的工作任务。其次在工作中也经常遇到一些新的问题,通过和领导、同事们的商讨研究最终解决。同时也对相关工作有了进一步的认识。

  二、工作内容与体会:我的工作主要是配合研发一部的其它几个岗位做相应的分析

  第一、配合重整催化剂评定岗位生成油的折光率和烃类组成分析;

  第二、配合抽提组的芳烃抽提的柴油做烃类组成分析;

  第三、配合代研究做的裂解油的黏度,酸值及色度等分析;

  第四、负责研发一部水样的水中油含量、水垢等相关分析;另外在原油评价中负责酸值、蜡含量、硫醇硫、色度、冷虑点、黏度及逆流黏度等相关分析;

  参加hr—05b300溶剂生产负责取样及黏度分析共二十一天;其次就是一些储存油样的色度分析及其它的一些实验分析;另外我还积极配合其他同事完成了一些工作任务。一年中,在领导和同事们的悉心关怀和指导下:我共完成色度数据500多个;折光率数据150个;黏度数据88个;逆流黏度数据140个;水中油数据245个;荧光族组数据193个;柴油族组成数据115个;酸值数据30多个;蜡含量数据11个;密度数据16个;冷虑点数据5个;溴价溴指数数据18个。化验工作精细琐碎,而且由于我们主要是搞研发,所以不像炼油厂的化验工作很有规律性。我们会经常遇到不同的新问题。所以为了搞好工作,我不怕麻烦,细心观察实验现象,向领导请教、向同事学习、自己摸索实践,认真学习相关业务知识,不断提高自己的理论水平和综合素质。在实验室工作安全意识和环保意识相当重要。所以我工作投入,能够正确认真对待每一项工作,熟记各项安全措施,遇事不能慌。环保也是相当重要,做到每种化学试剂和需要处理的油样,集中分类处理,不随意乱倒。这些对环境都很有影响。在刷洗瓶子时,不随便倒沾有油的污水。同时注意到实验室的通风和各种化学试剂及油样的摆放问题。

  三、工作态度与勤奋敬业:我热爱自己的本职工作,正确认真对待每一项工作,在开展工作之前做好个人,有主次的先后及时完成各项工作

  热心为大家服务,认真遵守劳动纪律,保证按时出勤。有效利用工作时间,坚守岗位,需要加班完成工作按时加班加点,保证工作能按时完成。在作风上,能遵章守纪、团结同事、务真求实、乐观上进,始终保持严谨认真的工作态度和一丝不苟的工作作风。积极参加公司组织的各项活动,如春游,秋季五项全能体育比赛等。

  总结这一年来的工作,尽管有了一定的进步和成绩,但在一些方面还存在着不足。比如很多实验只是停留在简单的操作而忽视了工作原理;实验过程中由于自己的粗心导致实验仪器损坏或实验结果误差较大等。还有个别实验做得不够熟练,不够完善,这有待于在今后的工作中加以改进。通过这段时间的工作实践,让我懂得从事实验分析工作一定要细心,不能放过一个疑点,有问题多请示,多汇报。在今后的时间里,我将认真遵守各项考勤制度,努力学习有关石油化工的各项实验分析方法及石油化工知识,争取成为一名更为优秀的全方面的实验分析化验员,为公司的发展献出自己的一份力量。

数据员个人工作总结4

  一、数据量过大,数据中什么情况都可能存在

  如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。

  二、软硬件要求高,系统资源占用率高

  对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。

  三、要求很高的处理方法和技巧

  这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。

  下面我们来详细介绍一下处理海量数据的经验和技巧:

  一、选用优秀的数据库工具

  现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQLServer20xx性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQLServer20xx需要花费6小时,而使用SQLServer20xx则只需要花费3小时。

  二、编写优良的程序代码

  处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。

  三、对海量数据进行分区操作

  对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQLServer的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。

  四、建立广泛的索引

  对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。

  五、建立缓存机制

  当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。

  六、加大虚拟内存

  如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P42。4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096xx6+1024=25600M,解决了数据处理中的内存不足问题。

  七、分批处理

  海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。

  八、使用临时表和中间表

  数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。

  九、优化查询SQL语句

  在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。

  十、使用文本格式进行处理

  对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。

  十一、定制强大的清洗规则和出错处理机制

  海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。

  十二、建立视图或者物化视图

  视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。

  十三、避免使用32位机子(极端情况)

  目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。

  十四、考虑操作系统问题

  海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。

  十五、使用数据仓库和多维数据库存储

  数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。

  十六、使用采样数据,进行数据挖掘

  基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。

  还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。

  海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。