欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教案大全

比的意义教案(最新7篇)

时间:2023-07-28 09:41:29 教案大全

  【前言】本文是会员“gtz0”收集的比的意义教案(最新7篇),欢迎参阅。

比的意义教案

《比例的意义》教案 篇1

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1、理解比例的意义,认识比例各部分的名称。

  2、让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3、培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 ∶ 10∶6

  教师:同学们发现∶和10∶6的`结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1、提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2、探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3、认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4、教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5、运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,∶25能否和∶75组成比例?为什么?

  学生讨论后回答:因为75=25,所以∶25和∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

《比例的意义》教案 篇2

  1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。

  2.学会判断成正比例关系的量。

  3.进一步培养学生观察、分析、概括的能力。

  教学重点和难点

  理解正比例的意义,掌握正比例变化的规律。

  教学过程设计

  (一)复习准备

  请同学口述三量关系:

  (1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。

  (学生口述关系式、老师板书。)

  (二)学习新课

  今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。

  幻灯出示:

  一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?

  生:60千米、120干米、180千米……

  师:根据刚才口答的问题,整理一个表格。

  出示例1。(小黑板)

  例1 一列火车行驶的时间和所行的路程如下表。

  师:(看着表格)回答下面的问题。表中有几种量?是什么?

  生:表中有两种量,时间和路程。

  师:路程是怎样随着时间变化的?

  生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……

  师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。

  (板书:两种相关联的量)

  师:表中谁和谁是两种相关联的量?

  生:时间和路程是两种相关联的量。

  师:我们看一看他们之间是怎样变化的?

  生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。

  师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?

  生:路程由480千米变为420千米、360千米……

  师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)

  生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。

  师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?

  (分组讨论)

  师:请同学发表意见。

  生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。

  师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?

  师:根据时间和路程可以求出什么?

  生:可以求出速度。

  师:这个速度是谁与谁的比?它们的结果又叫什么?

  生:这个速度是路程和时间的比,它们的结果是比值。

  师:这个60实际是什么?变化了吗?

  生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。

  驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。

  师:谁是定量时,两种相关联的量同扩同缩?

  生:速度一定时,时间和路程同扩同缩。

  师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。

  (学生口算验证。)

  生:都是60千米,速度不变,符合变化的规律,同扩同缩。

  师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。

  师:谁能像老师这样叙述一遍?

  (看黑板引导学生口述。)

  师:我们再看一题,研究一下它的变化规律。

  出示例2。(小黑板)

  例2 某种花布的米数和总价如下表:

  (板书)

  按题目要求回答下列问题。(幻灯)

  (1)表中有哪两种量?

  (2)谁和谁是相关联的量?关系式是什么?

  (3)总价是怎样随着米数变化的?

  (4)相对应的总价和米数的比各是多少?

  (5)谁是定量?

  (6)它们的变化规律是什么?

  生:(答略)

  师:比较一下两个例题,它们有什么共同点?

  生:都有两种相关联的量,一种量变化,另一种量也随着变化。

  师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)

  师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?

  生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。

  师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)

  师:很好。请打开书,看书上是怎样总结的?

  (生看书,并画出重点,读一遍意义。)

  师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?

  师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?

  生:(答略)

  师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。

  (三)巩固反馈

  1.课本上的“做一做”。

  2.幻灯出示题,并说明理由。

  (1)苹果的单价一定,买苹果的数量和总价( )。

  (2)每小时织布米数一定,织布总米数和时间( )。

  (3)小明的年龄和体重( )。

  (四)课堂总结

  师:今天主要讲的是什么内容?你是如何理解的?

  (生自己总结,举手发言。)

  师:打开书,并说出正比例的意义。有什么不明白的地方提出来。

  (五)布置作业

  (略)

  课堂教学设计说明

  第一部分:复习三量关系,为本节内容引路。

  第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。

  第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。

  总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水平不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。

  板书设计

《比例的意义》教案 篇3

  教学内容:P35~37 解比例

  教学目的:

  1、使同学学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、通过合作交流、尝试练习,提高同学运用比例的基本性质解比例的能力。

  3、培养同学的知识迁移的能力,增强同学的合作意识。

  教学重点:使同学掌握解比例的方法,学会解比例。

  教学难点:引导同学根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程:

  一、回顾旧知,复习铺垫

  1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  2、判断下面每组中的两个比是否能组成比例?为什么?

  6:3和8:4 : 和 :

  3、这节课我们继续学习有关比例的.知识,学习解比例。(板书课题)

  二、引导探索,学习新知

  1、什么叫解比例?

  我们知道比例共有四项,假如知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  (1)把未知项设为X。解:设这座模型的高是X米。

  (2)根据比例的意义列出比例:X:320=1:10

  (3)让同学指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

  根据比例的基本性质可以把它变成什么形式?3x=815。

  这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

  (4)同学说,教师板书解比例的过程。

  教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  3、教学例3。

  出示例3:解比例 =

  提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

  这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  同学回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:=

  让同学在课本上填出求解过程。解答后,让他们说一说是怎样解的。

  4、总结解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、P35“做一做”。同学独立解答,订正时,让同学说说是怎么做的。

  三、巩固深化,拓展思维

  P37第7题。

  四、全课小结,提高认识

  什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

  五、课堂练习,辅助消化

  P37~38第8~11题。

  六、课外补充,拓展延伸

  1、P38第12、13题。

  2、4:8=12:24,假如将第二项减少1,要使比例成立,则第四项减少多少?

  3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

  4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

比的意义教案 篇4

教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学重点:会根据题意列方程。

  教学难点:理解方程的含义。

教学过程:

一、教学例1

  出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组

  内交流,要说出理由。

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的。等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

四、课堂作业:练习一的1、2、3。

  板书: 方程的初步认识

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

《比的意义》教案 篇5

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的`时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

(1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

(2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

(3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67 的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

  今天这节课我们学习了?你有哪些收获?

比的意义教案 篇6

课题:

  培养审美的眼睛——美术鉴赏及其意义

课时:

  一课时

课型:

  理论欣赏课 高中美术教案:培养审美的眼睛——美术鉴赏及其意义

教材分析:

  本课高中美术教案:培养审美的眼睛——美术鉴赏及其意义是关于美术欣赏

  理论知识的第一课。美术欣赏,是欣赏者对美术作品进行知觉、感受、体会和解

  释、评价的复杂的心理活动过程,在欣赏过程中,欣赏者的欣赏能力和知识素养

  往往直接影响到欣赏活动的质量,而掌握美术理论知识能有效的提高欣赏质量。

教学目标:

  本课作为高中整个美术鉴赏教学的开篇,对后面的教学具有指导意义。通过本课的教学,使学生初步了解什么是美术鉴赏、美术鉴赏的一般过程和特征,以及学习美术鉴赏有什么意义,由此掌握美术鉴赏的方法,培养学生“审美的眼睛”。

教学过程:

  本课主要包括四个部分:

  第一部分从现代人的全面发展出发,指出培养审美的眼睛是现代人全面发展的需要,而美术鉴赏则是培养审美的眼睛的必要途径。

  第二部分“什么是美术鉴赏”,先从对身处天安门广场的感受和对天安门的认知中,说明美术鉴赏并不神秘,而是与我们的生活息息相关,并由此引出美术鉴赏的问题。然后再从具体的美术作品入手,以中国唐代画家的中国画《捣练图》和法国画家米勒的油画《拾穗》为例,简单介绍了美术鉴赏的一般过程或方法,由此导入,进入概念分析,阐明什么是美术鉴赏、其特性以及在美术鉴赏中被动接受与主动参与的关系等。这里没有涉及什么是美术或什么是艺术的问题,而是直接谈什么是美术鉴赏,这是因为美术或艺术的概念本身就十分复杂,它将涉及到更为复杂的专业知识,这对于学生的理解来说是困难的,也将影响本课的主题。更由于当代艺术已模糊了艺术与非艺术、艺术与生活的界限,“什么是艺术”在学术界也是一个正处于争论之中的问题,对于那些还没有定论的问题我们只好在教学中暂时悬置起来。

  第三部分“美术作品是如何分门别类的”,简单介绍了美术的基本分类方法,这里只列出了一个简略的艺术分类,学生了解这些就可以了。但教师还应明白,在美术的六大分类——绘画、雕塑、建筑、设计、书法、摄影中,还可以按照其材料、功能、题材、内容等作更细致的划分。

  第四部分“美术鉴赏有什么意义”,以美术的三大功能为基础,说明美术鉴赏不仅是对知识的学习,更重要的是对培养学生认识世界的能力、审美的眼睛和健康的审美情趣以及未来的人生发展,都具有十分重要的意义。

  教学的重点与难点:

  本课教学的重点在于培养审美的眼睛,掌握美术鉴赏的一般方法,认识美术鉴赏对于个人未来人生发展的重要价值和意义。

  本课教学难点,主要是如何结合实例讲清美术的主要分类方法、美术鉴赏的概念和美术鉴赏的一般过程或方法。

课堂总结:

  对于美术鉴赏是与我们的生活密切相关的,并对我们的生活中起着很重要的作用,通过对本课的学习,要学习自己通过对美术鉴赏的过程来学习及鉴赏。

  作业布置:

  选取一件自己喜欢的美术名作,搜集资料并作出总结,谈谈自己的想法和感受。

比的意义教案 篇7

学习内容:

  教材104页例1、例2及做一做。

学习目标:

  1、 我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。

  2、 我能正确计算同分母分数加、减法。

  3、 我会用所学知识解决实际问题。

学习重点:

  理解同分母分数加、减法的算理。

学习难点:

  学会同分母分数加、减法的计算方法。

学习准备:

  圆纸片

学习过程:

一、检查课前学习,导入新课

二、自主学习,合作探究

  1、自学教材104页例1

(1)我得到的数学信息

(2)求爸爸妈妈一共吃了多少张饼?我写的算式

(3)我是这样想的,得出结果

(4)通过解答,我发现

  分数加法的含义与整数加法的含义( )

  计算同分母分数加法时,分母( ),分子( )。

  2、小组合作学习例2

  仔细观察,根据问题,写出算式。

  我是这样想的,得出结果:

  从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。

  3.小组展示,汇报。

  4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。

  5.我能行

  完成105页做一做第一题。

相关热搜