欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教案大全

七年级数学教案汇编11篇

时间:2023-08-20 09:00:59 教案大全

  【简介】以下是热心网友“shaojiaotui”整理的七年级数学教案汇编11篇,以供参考。

七年级数学教案

七年级数学教案 篇1

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

初中七年级数学教案 篇2

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点:深化对正负数概念的理解

  知识重点:正确理解和表示向指定方向变化的量

  教学过程:(师生活动)设计理念

  知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示,这就是说:数的范围扩大了(数有正数和负数之分),那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论。

  (数0既不是正数又不是负数,是正数和负数的分

  界,是基准,这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分,在引入

  负数后,0除了表示一个也没有以外,还是正数和负数的分界,了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性,“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明,这个问题只要初步认识即可,不必深究。

  分析问题

  解决问题问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。

  类似的例子很多,如:

  水位上升-3m,实际表示什么意思呢?

  收人增加-10%,实际表示什么意思呢?

  可视教学中的实际情况进行补充。

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健,这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数)

  本课作业

  1,必做题:教科书第7页习题第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分,在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助,由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣。

七年级数学教案 篇3

  一、素质教育目标

  (一)知识教学点

  能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.

  (二)能力训练点

  培养学生的观察能力和运算能力.

  (三)德育渗透点

  培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯.

  (四)美育渗透点

  通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.

  二、学法引导

  1.教学方法:尝试指导法,以学生为主体,以训练为主线.

  2.学生学法:

  三、重点、难点、疑点及解决办法

  重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师用投影出示练习题,学生用多种形式完成.

  七、教学步骤

  (一)复习提问

  (出示投影1)

  1.有理数的运算顺序是什么?

  2.计算:(口答)

  ① , ② , ③ , ④ ,

  ⑤ , ⑥ .

  【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的.

  (二)讲授新课

  1.例2 计算

  师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号.

  思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.带分数进行乘除运算时,必须化成假分数.

  动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.

  一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正.

  【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯.

  2.尝试反馈,巩固练习(出示投影2)

  计算:

  ① ;

  ② .

  【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练.

  3.例3 计算: .

  教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算.

  思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算.

  动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多.

  检查计算结果是否正确.

  一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.

  4.尝试反馈,巩固练习(出示投影3)

  计算:① ;

  ② ;

  ③ ;

  ④ .

  首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.

  说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误.通过此题让学生注意运算顺序.3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点.让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识.本题要特别注意运算顺序.

  【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析能力和运算能力.通过变式训练,也培养学生的.思维能力.学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固.

  (三)归纳小结

  师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率.

  (四)反馈检测(出示投影4)

  (1)计算① ; ②

  ③ ; ④ ;

  ⑤ .

  (2)已知 , 时,求下列列代数式的值

  ① ; ② .

  以小组为单位计分,积分最高的组为优胜组.

七年级数学下册教案 篇4

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

  【教法说明】

  同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1; ×( )=1; ×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  学生活动:口答以上题目.

  【教法说明】

  在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】

  教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.计算:8÷(-4).

  计算:8×()=? (-2)

  8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

  【教法说明】

  通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-)÷;

  (3)()÷(); (4)÷(-1).

  学生活动:

  1题让学生抢答,教师用复合胶片显示结果.

  2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】

  此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0.

  【教法说明】

  通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1 计算:

  (1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

  (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2 化简下列分数

  例3 计算

  (1)()÷(-6);

  (2)-÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】

  例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了及倒数的概念,回答问题:

  1.的倒数是();

  学生活动:分组讨论。

  【教法说明】

  对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

  八、随堂练习

  1.填空题

  (1)的倒数为,相反数为,绝对值为

  (2)(-18)÷(-9)=;

  (3)÷(-)=;

  (4);

  (5)若,是;

  (6)若、互为倒数,则;

  (7)或、互为相反数且,则,;

  (8)当时,有意义;

  (9)当时,;

  (10)若,则,和符号是,.

  2.计算

  (1)-÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作业

  (一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

  2.计算:(1)()×()÷();

  (2)-6÷(-)×.

  3.当,时求的值.

  (二)选做题:1.填空:用“>”“<”“=”号填空

  (1)如果,则,;

  (2)如果,则,;

  (3)如果,则,;

  (4)如果,则,;

  2.判断:正确的打“√”错的打“×”

  (1)( );

  (2)( ).

  3.(1)倒数等于它本身的数是.

  (2)互为相反数的数(0除外)商是.

  【教法说明】

  必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

  选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

  十、板书设计

七年级数学教案 篇5

教学过程:

  知识整理

  1、回顾本单元的学习内容,形成支识网络。

  2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

  1、什么叫比?比例?比和比例有什么区别?

  2、什么叫解比例?怎样解比例,根据什么?

  3、什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  4、什么叫比例尺?关系式是什么?

基础练习

  1、填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

  甲乙两数的比是5:3。乙数是60,甲数是()。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

综合练习

  1、 A×1/6=B×1/5 A:B=():()

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例():()、():()

实践与应用

  1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是它们的比是5:4,这块钢板的实际面积是多少?

板书整理和复习

  1、比例的意义

  2、比例比例的性质

  3、解比例

  4、正反比例正方比例的意义

  5、正反比例的判断方法

  6、比例应用题正比例应用题

  7、反比例应用体题

教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、培养学生的思维能力。

七年级数学教案 篇6

教材分析:

  本节课是新教材几何教学的第一节课,通过学生身边的现实生活中的实物,让学生感觉图形世界丰富多彩。经历从现实世界中抽象出几何图形的过程。激发学生学习几何的热情。。无需对具体定义的深刻理解,只要学生能用自己的语言描述它们的某些特征。

教学目标:

知识目标:

  在具体情境中认识立方体、长方体、圆柱体、圆锥体、球体。并能用自己的语言描述它们的某些特征。进一步认识点、线、面、体,初步感受点、线、面、体之间的关系。

能力目标:

  让学生经历“几何模形---图形---文字”这个抽象过程,培养学生抽象、辨别能力。

情感目标:

  感受图形世界的丰富多彩,激发学习几何的热情。

教学重点:

  经历从现实世界中抽象出几何图形的过程,感受点、线、面、体之间的关系。

教学难点:

  抽象能力的培养,学习热情的激发。

教学方法:

  引导发现、师生互动。

教学准备:

  多媒体课件、学生身边的实物等。

教学过程:

  合作学习

  问题1:

  我们已学过的或认得的存有哪些几何体?

(学生讨论、交流)

  问题2:

  你能举出一些在日常生活中形状与上述几何体类似的物体吗?

(学生讨论、举例)

  课本中P162中的合作学习

(教师可多举一些平面与曲面的实例让学生感受、辨别)

  特别指出:

  数学中的平面是可以无限伸展的

  议一论

  P163课内练习1

  P163课内练习2

  师生讨论指出:

  线与线相交成点,面与面相交成线。

  想一想:

  观察下图,你发现什么?

  师生讨论

  议一议:

  日常生活中的哪些事物给人以点、线的形象。

  指出:

  日常生活中点与面只是相对的一个感念。如:

  在中国的地图上,北京是一个点;而在北京市地图上,北京是一个面。

  活动探究:

  P164课内练习3

  应用拓展:

  请以给定的图形“〇〇、△△、═”(两个圆、两个三角形、两条平行线)为构件,尽可能多地构思独特且有意义的图形,并写上一句贴切、诙谐的解说词。如图就是符合要求的一个图形。你还能构思出其他的图形吗?比一比,看谁想得多。

  议一议:

  本节课有什么收获?

  布置作业

七年级数学教案 篇7

  本节课的主要任务是引导学生完成由立体图形到视图,再由视图想到立体图形的复杂过程。这对于刚刚接触几何的初一学生而言,无疑是一次较大的挑战,顺利地完成教学,对今后学习兴趣、信心的培养都是至关重要的,因此,我针对学生的心理特点及接受能力对教材做如下

  首先我用苏轼的《题西林壁》巧妙地唤起学生的生活感受,让他们认识到视图的知识在生活中我们早有亲身体验,只是还没有形成概念,然后我再用“粉笔”这一简单的教具,让学生再次体会,加深认识,这样,教学与生活紧密相连,既有自然地导入课题,又消除学生对新知识的恐惧,同时还激发了学生浓厚的学习兴趣。

  然后,我不适时地出示“三视图”这一概念,通过实验,让学生认识到视图就是由立体图形转化成的平面图形,并不断地训练、讨论、总结,得出画三视图的正确方法。这时教师要巧妙点拨,学生如何从正面、上面、侧面三个角度来观察,既体现了学生的主体地位,又突出了教师的主导作用,锻炼了学生的动手操能力。

  由视图到立体图形与上面的过程恰恰相反,需要学生根据视图进行想象,在大脑中构建一个立体形象。我引导学生利用直观形象与生活中的实物进行联系,通过归纳、总结、对比的方法,有效的突破这一难点。为了进一步地激发学生的学习兴趣,培养学生的想象能力和思维能力,可以让学生用一些小立方体随意摆出几种组合并描绘出它的视图,再由视图到立体图形的课堂训练。最后,让学生归纳所学知识,进一步锻炼学生的概括能力,使知识系统化。以上设计如有不妥之处,望老师们不吝赐教,我不胜感激。

评课记录

  开发区李玉:于坤老师这节课有几个突出特点:

1、给学生创设了生动的问题情境。

  本节课用宋朝文学家苏轼的一首的诗《题西林壁》。“横看成岭侧成峰,远近高低各不同……”来引入课题,从横、侧、远、近、高、低等不同角度来观察庐山,引出如何观察生活中的立体图形,这个切入点非常好,一下子就能抓住学生的心,吸引学生的注意力。在平日的教学中,我们也应该多找这样的例子。如在教七年级《代数式》时,有的老师这样引入“童年是美好而幸福的,大家还记得那首“唱不完的儿歌吧”,然后同学们一起念“一只青蛙一张嘴,两只眼睛四条腿,扑腾一声跳下水;两只青蛙两张嘴,四只眼睛八条腿,扑腾两声跳下水;三只青蛙三张嘴,六只眼睛12条腿,扑腾三声跳下水……”,然后问:你能不能用一句话来唱完这首儿歌?引发学生思考的兴趣,有的学生通过思考得出:n只青蛙n张嘴,2n只眼睛4n条腿,扑腾n声跳下水,将字母表示数的优点一下子表现出来,令学生顿觉耳目一新。

2、注重过程教学和学法指导

  在教学画圆柱体、长方体、球体和圆锥体的三视图时,老师不是直接给学生讲解它们的三视图是什么,然后让学生记忆、变式练习,而是引导学生通过看书、观察老师手中的教具、学生自己的学具或学生自制的模型,再找学生回答、小组讨论,然后教师和学生一起确定答案。这种教学模式:提出问题,创设问题情境———观察实物或学生看书、计算、画图、独立思考、猜想———小组讨论交流———让一个小组代表发言,其它小组补充说明———师生交流总结———拓展应用的模式,比较符合学生的认知规律,能让学生经历探索知识的发生发展过程及在合作学习中学会与他人交流,不仅学会了知识,而且能锻炼学生的各种能力。

3、体现学生主体地位,注重学法指导

  教师在本节课上处处关注学生学习的主观能动性,学生自始至终处于被肯定、被激励之中,时时感受到自己是学习的主人,教师给学生留有较大的学习的空间:如观察、讨论、动手摆放学具等,提出问题后让学生充分思考并给予适时的点拨。教科院李洪光老师:

  1、周六研究课的定位:本学期的周六研究课不再是一节公开课,而是为解决我们在平日教学中存在的问题而开设的研究、研讨课。

  2、在平日的教学中,不少学校和老师存在这样的现象:课堂上老师讲的多,学生学的少;学生听明白的多,学会的少。究其原因,是我们只注重了终端的结果,而忽视了学习知识的过程。因此在今后的课堂教学中,我们应该让学生掌握知识的发生、发展的过程,让教师和学生充分暴露思维的过程,另外让学生学会学习数学的方法,这也是我们的任务之一。这两节课在这些方面都做了有益的探索。如王长山老师给学生提供了丰富的材料让学生思考、探索,在教学过程中渗透数学思想和方法。于坤老师抓住本节课的核心问题,处处让学生参与到学习探究活动中,教学生观察事物的方法,寻找数学与生活的联系等作法,就很好地体现了新课改的理念。当然并不是所有的课型都让学生探究、讨论,如果讲解能引发学生思维的就用讲解法,讨论交流能引发思维的就用讨论法,总之,在教学中要充分调动学生思维的积极主动性。另外一定要突出数学自身的特点,在我们的老师的课上,多数老师在一节课的结尾都让学生谈谈本节课学会了哪些知识、方法,有什么体会,对本节的内容进行概括性总结,这样做就让学生对本节课有了整体认识。另外不少老师强调严密的逻辑思维、严格的解题步骤等作法都值得发扬。

七年级数学下册教案 篇8

教学目标

  1、经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念

  2、了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论、

  3、会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线、

重点:

  探索和掌握平行公理及其推论、

难点:

  对平行线本质属性的理解,用几何语言描述图形的性质、

教学过程

  一、创设问题情境

  1、复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

  学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答、教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

  2、教师演示教具、

  顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

  3、教师组织学生交流并形成共识、

  转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点、继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点、

  二、平行线定义表示法

  1、结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行、换言之,同一平面内,不相交的两条直线叫做平行线、

  直线a与b是平行线,记作“∥”,这里“∥”是平行符号、

  教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线、

  2、同一平面内,两条直线的位置关系

  教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系、

  在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一、即两条直线不相交就是平行,或者不平行就是相交、

  三、画图、观察、归纳概括平行公理及平行公理推论

  1、在转动教具木条b的过程中,有几个位置能使b与a平行?

  本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行、

  2、用直线和三角尺画平行线、

  已知:直线a,点B,点C、

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  3、通过观察画图、归纳平行公理及推论、

(1)由学生对照垂线的第一性质说出画图所得的结论、

(2)在学生充分交流后,教师板书、

  平行公理:经过直线外一点,有且只有一条直线与这条直线平行、

(3)比较平行公理和垂线的第一条性质、

  共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的

  不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外、

  4、归纳平行公理推论、

(1)学生直观判定过B点、C点的a的平行线b、c是互相平行、

(2)从直线b、c产生的过程说明直线b∥直线c、

(3)学生用三角尺与直尺用平推方验证b∥c、

(4)师生用数学语言表达这个结论,教师板书、

  结果两条直线都与第三条直线平行,那么这条直线也互相平行、

  结合图形,教师引导学生用符号语言表达平行公理推论:

  如果b∥a,c∥a,那么b∥c、

(5)简单应用、

  练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由、

  本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范、

  四、作业:课本P16、7,P17、11、

七年级数学教案 篇9

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

  【教法说明】

  同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1; ×( )=1; ×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  学生活动:口答以上题目.

  【教法说明】

  在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】

  教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.计算:8÷(-4).

  计算:8×()=? (-2)

  8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

  【教法说明】

  通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-)÷;

  (3)()÷(); (4)÷(-1).

  学生活动:

  1题让学生抢答,教师用复合胶片显示结果.

  2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】

  此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0.

  【教法说明】

  通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1 计算:

  (1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

  (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2 化简下列分数

  例3 计算

  (1)()÷(-6);

  (2)-÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】

  例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了及倒数的概念,回答问题:

  1.的倒数是();

  学生活动:分组讨论。

  【教法说明】

  对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.

  八、随堂练习

  1.填空题

  (1)的倒数为,相反数为,绝对值为

  (2)(-18)÷(-9)=;

  (3)÷(-)=;

  (4);

  (5)若,是;

  (6)若、互为倒数,则;

  (7)或、互为相反数且,则,;

  (8)当时,有意义;

  (9)当时,;

  (10)若,则,和符号是,.

  2.计算

  (1)-÷()×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作业

  (一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.

  2.计算:(1)()×()÷();

  (2)-6÷(-)×.

  3.当,时求的值.

  (二)选做题:1.填空:用“>”“<”“=”号填空

  (1)如果,则,;

  (2)如果,则,;

  (3)如果,则,;

  (4)如果,则,;

  2.判断:正确的打“√”错的打“×”

  (1)( );

  (2)( ).

  3.(1)倒数等于它本身的数是.

  (2)互为相反数的数(0除外)商是.

  【教法说明】

  必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.

  选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.

  十、板书设计

七年级数学教案 篇10

  第一章 一元一次不等式组

   一元一次不等式组

  第1教案

  教学目标

  1. 能结合实例,了解一元一次不等式组的相关概念。

  2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。

  3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。

  教学重、难点

  1..不等式组的解集的概念。

  2.根据实际问题列不等式组。

  教学方法

  探索方法,合作交流。

  教学过程

  一、 引入课题:

  1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。

  2. 由许多问题受到多种条件的限制引入本章。

  二、 探索新知:

  自主探索、解决第2页“动脑筋”中的问题,完成书中填空。

  分别解出两个不等式。

  把两个不等式解集在同一数轴上表示出来。

  找出本题的答案。

  三、 抽象:

  教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)

七年级数学上册教案 篇11

  教学目标:

  1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

  2、在操作活动中认识棱柱的某些特性;

  3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

  教学重点:

  通过活动认识归纳出棱柱的.特性,并能初步感受到研究空间问题的思维方法

  教学难点:

  根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

  教学过程:

  一、导入情境

  让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

  二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做

  活动一:

  1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的形式动手做做看。

  2、操作完后,请学生展示他们制作的模型。

  3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

  4、教师介绍棱柱的各部分名称。