欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学反思

平行线的性质教学反思12篇(平行线的性质教学评价思路)

时间:2024-02-11 13:28:38 教学反思

  下面是范文网小编分享的平行线的性质教学反思12篇(平行线的性质教学评价思路),供大家参考。

平行线的性质教学反思12篇(平行线的性质教学评价思路)

平行线的性质教学反思1

  《数学课程标准》中指出:“学生的数学学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”新课程与旧课程的本质区别是理念的不同。旧课程认为课程是知识,教师是知识的传授者,学生是知识的接受者。而新课程认为课程不仅是知识,同时也是经验,是活动,课程是教师和学生共同探求新知识的过程,学生获取知识的过程是自我建构的过程。因此,在这节课的设计上,力争创设一种符合学生认知规律的、轻松和谐的学习氛围,鼓励学生自主探究和合作交流,最终能灵活解决数学问题。以下是我对这节反思

  这节课我比较满意的是:

  1、对教学内容进行了合理、大胆的重组、加深,通过证明推理题、计算推理题对平行线的判定与性质进行了灵活的运用。注重学生的自己分析,启发学生用不同方法解决问题。

  2、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。

  3、注重由学生从临摹书写到自主书写,锻炼学生的动手能力。

  这节课还需改进的是:

  1、课堂的应变能力还需提高。对例三的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会。在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。

  2、板书还要精心设计。

  3、没有兼顾到学生的差异,如果在分析的'环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。

  反思是为了促进发展,反思是一种有思考的学习,是一种有理性的总结,可以提高教师教学教研的水平。今后每一节普通的课,都是我不断反省、审视自己,不断完善自己基本技能、提高教学水平的载体。

平行线的性质教学反思2

  本节课首先提出问题:

  1.请同学们回顾前面学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

  2、把这三句话的已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

  这样通过复习旧知,引出新知,通过提问,让学生思考,针对问题,敢于发表自己的见解。紧接着让学生动手操作,利用我们学习的平行线的画法,画出两条互相平行的直线,作出截线,找出其中的同位角,让学生讨论用什么样的方法可以验证同位角之间的关系,学生说出可以用度量的方法或剪切的方法来验证,然后让学生选择其中的一个方法进行验证,把验证的结论告诉大家,从而得出平行线的性质一,用这样的方法可以让学生都参与到教学中来,提高了他们动手、动脑的能力,而且增加了学习兴趣。再让学生用“∵”、“∴”的'推理形式,也就是数学符号语言的形式把性质一表示出来。这样可以增强学生的数学符号感。

  另外两个性质让学生想办法验证,再利用性质一来推导,加强了学生的逻辑推理能力。

  反思本节课的教学有以下成功之处:

  1、这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。

  2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸,三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。

  3、在教学中,设计了知识的拓展环节,加深了学生对平行性质的理解。

  4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。

  这节课存在的问题:

  在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

平行线的性质教学反思3

  从20号下午抽到课题《10.3平行线的性质》后,我就觉得这一课题是对我的一次很大的挑战,因为本次参赛选手都是优中选优的,在教学工作中肯定都总结了一定的教学经验,起码对教材非常熟悉。而我呢,对初一教材新课讲授却是第二次,第一次还是20xx年,这与熟悉教材的同行们比较,就是一个挑战。对于本节课的处理我也一直纠结,第一个纠结的地方就是课件的制作,以前上课我都喜欢用PPT做课件,本次比赛,我就想在课件制作上求不同,大胆地尝试用flash做课件,是熟练地用PPT还是求新用flash?到底哪一个选择更成功,这使我有点纠结,最终我还是选择后者;第二个纠结的地方,时间紧,又是借班上课,抽到课题后,只有一晚上时间准备,既要书写教学设计,又要制作课件,还要熟悉学生认知情况,对于我来说又是一大挑战。想三者都做到最好,我能力有限,很难办到,所以我最终选择精心准备教学设计,求新制作好课件,就忽略了学生的认知情况。

  45分钟很快结束了,但这节课却带给了我很多的反思。

  我比较满意的是:

  1、教学目标基本实现,新课程标准下,过程与方法的教学,通过观察、操作、猜想、推理、交流基本达到,我的教学设计基本完成;

  2、flash制作的课件完成的比较顺利,尤其在例题讲解中,flash制作的图形分离,使学生一目了然,把本节课的难点通过动态的图形运动展现出来,让学生轻松接受,这也为初一学生今后学习图形平移变换奠定了一定的基础;

  3、学生知识掌握的反馈信息也基本达标,大部分学生都掌握从复杂图形中去找简单的基本图形,然后运用本节课学习的性质解决实际问题。

  这次的同课异构形式的比赛活动,让我在学习中发现了自己的不足:①自身对课程内容的讲解时缺乏灵活性;

  ②逻辑语言的表述有时不够明确,引导学生时语言不够到位;

  ③由于时间紧,课前没有展示课件,我认为初一的学生与小学生没有太大的区别。所以在制作课件时采用不同颜色的字体展现内容,给学生的观察带来不便,影响了学生的参与度,有点华而不实。本节课的效果证明,我的两个纠结都选错了,忽略学生的学情使本节课的师生互动,配合默契程度很低,没有充分发挥学生的.主动性。使用flash让课件展示地点固定比较单一,一味的求新求异结果却适得其反没有达到预定的效果。

  总之,同课异构虽然只是一节课,但通过这一节课的互相学习与分析让我更加清楚了数学教学的内涵与方式,希望能够有更多的机会参与到这样的学习中来。在学习中锻炼提高自身教育教学水平,非常感谢市教研室的领导孙彦主任,何承全主任为我们搭建了这样一个学习平台,也非常感谢各位评委老师的辛勤参与与大力配合,为我们青年教师提供了良好的学习环境,相信在这种机会的锻炼下,我一定能够迅速成长,以更优异的表现胜任数学教学工作。

平行线的性质教学反思4

  第五章平行线的性质内容,是在学生学习平行线的条件之后来进行学习的。因此,在引入环节,就充分考虑到学生已经具备的这一知识基础,从回忆平行线的判定入手,创设一个疑问来激发学生的思考,进而引导学生进行平行线性质的探索。

  本节课最突出的是平行线性质的得到过程,不是教师将学生听得到的,而是学生通过自主探索、实验、验证发现的,即在学生充分活动的基础上,由学生自己发现的,并用自己的语言来归纳的,这对学生增强学习的兴趣和学习的自信心都很有好处,而两次探索情景的引导又不尽相同,第一次探究“两直线平行,同位角相等”着重面向全体学生,让全体学生都能参与的到探究活动中来,因此先安排了一个“探究步骤的”探索,而第二次探究“两直线平行,内错角相等”“两直线平行,同旁内角互补”,则更是强调学生的`自主学习,强调学生在学习过程的自主、自控学习过程。

  知识的拓展部分又助于学生加深对平行线性质的理解,区分性质与判定方法的区别与联系,以及对三个性质之间内在的联系的理解,同时也是为平行线性质的运用大好基础。

平行线的性质教学反思5

  《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。

  一、导学案设计如下:

  1、教学目标和重难点

  基于学生的学习情况,确定了本节课的教学目标和教学重难点。教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。

  2、具体内容安排如下:

  首先安排的是自主学习部分,以填空的形式。再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。

  接着安排的`是巩固提高练习。在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。

  再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。

  最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。

  二、这节课存在的问题与不足:

  1、 导学案内容设计上,测评反馈较简单,起不到测评效果;

  2、 几何问题解决上,对已知条件分析不到位,导致学生不知如何运用已知条件,推理思维重视不够;

  3、 小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;

  4、 解决问题的方法总结上不到位;

  5、 驾驭课堂能力差,学生学习热情不能很好地调动;

  6、 教学语言不够简练,教学心理紧张。

  三、今后努力方向:

  一方面,在教学上认真钻研课本和新课标,抓教学内容的本质;多做一些练习,揣摩教学重难点,抓住出题方向,总结教学方法。另一方面,要立足于学生,站在学生立场上去备课去设计教学过程。同时,注重对学生进行循序渐进地练习,不要急于求成,有意识地培养学生有条理的思考和表述,训练学生的逻辑思维能力,另外,注意分析和解决问题方法的总结。最后,在自身素质上,多听课,多向其他教师请教,不断学习,提高专业素质和教学技能。还需养成会反思、勤反思的习惯,不断思考自己在教学过程中出现的问题和不足。

  总之,通过这次公开课,自己感触颇多。一方面暴露出自己有好多不足,另一方面说明自己的成长空间还很大。最后这篇反思就以这句诗结尾吧:路漫漫其修远兮,吾将上下而求索。

平行线的性质教学反思6

  通过磨课集思广益,统一了独学、对学、群学的认识,对自身教学设计思路和理念有很大提升。下面针对第二节课进行磨课反思如下:

  本节的亮点

  1、复习提问时,采用对学方式让师友互考平行线的判定方法,1分钟后,提问学友。学生对学的时效性较强。都想给小组加分。

  2、在探究平行线的性质时,让学生画两条平行线被第三条直线所截,观察构成的同位角有什么数量关系?你是怎么得到的?给3分钟小组群学。学生探究出4种方法:1是用三

  张纸条摆成两条平行线被第三条直线所截,平移一条平行线与另一条重合,得到同位角相等。2是通过画平行线观察平移三角板即是使同位角相等的过程。3是画好图后,用量角器测量同位角,可得两角相等。4是画好图后,把其中一个同位角剪下放到另一个角上可发现它们相等。但只演示了前两个方法,后两个没有全班交流。这两个演示非常形象、具体的展示了平行线的性质:两直线平行,同位角相等。使学生很容易接受。在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力。通过多种方法开阔了学生思维,拓展了思路。教师又追问:如果两条直线不平行,同位角还相等吗?一名学生板演画出两条相交直线被第三条直线所截构成的同位角是不相等的。让学生明确性质的前提条件必不可少。

  3、先探究出平行线的`性质1后,给出两道证明题,(1题如图,已知a∥b,求证:∠2=∠3

  2题已知a∥b,求证:∠2+∠4=180°)。先让学生独学,有了一定想法后,再对学、群学。但此处对学不明显。让学生通过证明得到另外两条性质,发展了学生逻辑思维,增强了主动学习的意识,目的性很明确。

  4、用一个版块,结合同一个图形,板书课前复习的平行线的判定和通过证明得到的平行线的性质的推理格式,加以对比,让学生观察它们有何不同?通过有形的具体实例,使学生在有了充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同。判定是由两角相等或互补的数量关系推出两直线平行的位置关系;性质是由两直线平行的位置关系推出两角相等或互补的数量关系。将文字语言、图形语言、符号语言三者相结合,同时渗透了数形结合思想。板书设计很合理,清楚,有利于学生对比、思考。

  5、为了让学生明确什么是判定?什么是性质?我又安排了一个小游戏,猜猜他是谁?举出一名学生的特点,让大家猜,点出这个过程就是判定。指出一名学生王子超,让其他学生说他有什么特点?点出这个过程就是性质。通过这样的类比通熟易懂,学生接受较好。本节的不足及改进措施

  1、我的教学语言不够精炼,还有一次口误。这是今后要避免和改正的,加强教学语言的备课。还要多听课,取长补短。力争做到精讲精练。

  2、在师友对学时,没有训练师傅点评知识点的易错点,易混点。今后在培养学生点评上下功夫。多给学生展示发挥的空间,激发学生勤于深思、善于总结的学习潜能。

  3、讲解和展示练习的时间不够,讲评由老师代劳,没时间让学生纠错。今后在教学中关注时间的合理安排。

平行线的性质教学反思7

  反思本节课的教学有以下成功之处:

  1、这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的'探索。

  2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸、三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。

  3、在教学中,设计了知识的拓展环节,加深了学生对平行性质的理解。

  4、在练习的设置过程中,从简到难,由简单的平行线性质的应用到平行线性质两步或三步运用,学生容易接受。

  这节课存在的问题:

  1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

  2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范。

平行线的性质教学反思8

  ①教的转变:

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

  ②学的转变:

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

  ③课堂氛围的`转变:

  整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

平行线的性质教学反思9

  课程理念认识:

  平行线的判定与性质分别是人教版七年级下册第五章中522和531的知识。

  虽然学生在小学已经接触过平行线,都能正确的认出平行线并且会画平行线,但是他们还不具备用数学语言进行说理的能力。平行线的性质和判定是学生在中学阶段首次遇到的具有严格证明步骤要求的几何知识。学好这两节知识对学生用演绎推理方法证明几何图形的性质具有非常重要的作用。

  教材对这两节课的知识要求是,能够用同位角、内错角、同旁内角判断两条直线是否平行,能够从同位角、内错角、同旁内角的角度考虑平行线的性质。而且平行线的性质是在学习了平行线的判定的基础上进行的。

  我在教学中发现,学生对于平行线的性质和判定定理在实际运用中很容易混淆。

  如下题:

  A D

  C

  (1)因为∠ABD=∠BDC,所以 AB ∥ CD (内错角相等,两直线平行)

  (2)因为AB ∥ CD,所以∠ABD=∠BDC(两直线平行,内错角相等)

  两个题目的理由很多学生会写混,条件、结论分不清楚。

  一、 对教材的教学顺序进行了调整,使知识更具体。

  针对上面出现的问题,教学中,我对教材的教学顺序大胆进行了调整试验。我所教的平行班有2个,我在2个平行班级的一个班先学习532命题、定理,后学习531平行线的性质;一个班级按照课本的顺序学习。我觉得两个班级的学生对知识的掌握和运用区别很明显。

  平行线的`性质是在学习平行线判断方法的基础上进行的,在学习平行线的性质时,我通过创设一个疑问串:①能不能通过两直线平行,来得到同位角相等呢?②“内错角相等,两直线平行”与“两直线平行,内错角相等”,这两个命题有什么区别和联系?你如何区分与他们?由问题引入新课,激发学生的思考,进而引导学生进行平行线性质的探索,避免平行线性质和平行线判定的混淆。

  学生在学习了命题、证明之后,对于一个命题,能正确的说出题设和结论分别是什么,对于命题的题设在前结论一般在后也能有个清楚地认识。所以回答引入的问题②很简单。在实际运用中,如命题:“同位角相等,两直线平行”,在学习了命题的有关知识之后,学生可以辨认出题设是两条直线被第三条直线所截,一组同位角相等,结论是这两条直线平行。这样学生就知道,这个命题的结论是两直线平行。在填写每一步的理由时发生混乱的情况就少了。

  二、充分利用和教具进行展示使知识更直观。

  教学平行线的判定时,利用三角板和直尺作已知直线的平行线的方法,来探究在同位角满足什么条件的情况下,两直线平行。使学生感知在三角板的平移过程中,同位角不变从而得到两条直线互相平行。再进一步把同位角利用其“对顶角”、“邻补角”转换出“内错角”、 “同旁内角”。

  在展示完毕后,我详细写出判断的过程,即初步的解答、证明过程,给学生一个印象,免得大家对数学证明过程产生恐惧心理或是无根无据的写,不知道何因得何果。特别是有意识的在条件和结论部分强调,使学生体会体检和结论的不同。

  然后发挥小组优势,小组同学一起画图体会,当“同位角相等,内错角相等、同旁内角互补“时,才能得到两条平行线,强化理解记忆。

  三、教师板书、学生板演的作用要发挥。

  因为是刚刚接触几何证明题,学生在步骤的书写上难免感到无从下手,我在教学中采用的是集体口头先仿写我的解题步骤,或是仿写例题的解答步骤,或是仿写同学中写的比较好的解答步骤,我再出示一个类似的题目,让学生自己独立书写解答步骤,做到慢慢的,逐步的完全放手给学生们!

  练习题由易到难分层布置,做完后先小组成员一起对组员的解题步骤进行审查,再在班级中展示。大家一起来发现步骤中的优缺点,互相学习。

  教学中的不足

  平行线的判定和性质在练习中,我对练习的难度把握的不是很理想,深入的过多,造成了一些中下游学生的学习障碍,在今后的教学中,我要先做好全面教学,再对优生拓展提高。

平行线的性质教学反思10

  1、这节课是在学生已学习平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角相等呢,自然引入新课,激发学生的思考,进而引导学生进行平行线性质的探索。

  2、整个课最突出的环节是平行线性质的得到过程,事先让学生准备好白纸,三角板,在上课时学生通过自主画图进行探索,得到猜想,再通过验证发现的'。即在学生充分活动的基础上,由学生自己发现问题的结论,让学生感受成功的喜悦,增强学习的兴趣和学习的自信心。在探究“两直线平行,同位角相等”时,要求全体学生参与,体现了新课程理念下的交流与合作。

  3、在教学中,设计了知识的拓展环节,加深了学生对平行性质的理解。

  这节课存在的问题:

  1、在上课过程中,担心学生由于基础差,不能很好的掌握知识,所以新课教学时间过长,学生练习时间短。

  2、由于课堂练习时间短,所以学生在灵活运用知识上还有欠缺,推理过程的书写格式还不够规范。

  3.课前准备较匆忙,选择的练习题难度较大 学生完全晕了,把探索直线平行的条件和平行线的性质混淆了

  4同位角内错角同旁内角不会找,三条直线找不出来

  评课记录

  王海燕老师:在讲同位角内错角同旁内角时,没有清晰的点出三条直线分别是什么,导致学生在找角的时候,乱七八糟,思维混乱:题目过难,练习题出的不合理,本节课内容过多。

  张华老师:在导入的时候,过于仓促,没有把性质讲透彻。初一几何题目应该以简单为主,让学生慢慢入门,使其对几何产生良好的兴趣。我在上课时题目出得较难。

  刘维红老师:在讲平行线的性质的时候,应该把它与平行线判定做一下比较,否则学生易混淆。

平行线的性质教学反思11

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

  ②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

  ③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的',让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

平行线的性质教学反思12

  《平行线的性质》教学反思平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到,它的内容是后续学习的基本,所以加强学生对平行线性质的掌握及应用显得尤为重要。

  这次的同课异构形式,让我在学习中发现了自己做课内容上的不足,也教学过程中找到了教学方法的欠妥当,而且在冯老师的指导下,了解了本节课内容的实质,并学会了分析、深挖教材的方法。基于我所备课的内容,我对这节课进行了较为深刻的反思,并颇有收获。

  一、教材分析

  教师是用教材教,而不是教教材,但教师的教学内容及合理性仍然要依靠教材,而不能脱离教材,所以对于一名青年教师来说,深刻挖掘教材是我首先也必要做的一件事,只有深刻发现教材的安排特点,掌握教材安排的用意,才能更好的去理解掌握并传授给学生。教材的设计符合学生的认知特点,层层递进,所以深挖教材,把握教学重难点并合理分配课时,能够使学生对于内容的理解更深刻清晰。在平行线的.性质第一课时中,重点内容为平行线性质的探究及应用,所以在授课过程中应将着眼点放在学生对性质的理解上,并强化学生基于性质之上的应用,使学生掌握并进行实际应用。并在挖掘概念的过程中提炼出内容的实质并注重知识的落实。

  二、课标分析

  数学课程标准明确指出,数学活动的发展依照观察、实验、猜想、证明的过程进行,由问题的特殊性转化到一般方式上,从而得出问题的结论。这样的活动过程符合学生的认知特点,并能够清晰的展示问题的思考过程,所以在授课时要严格贯彻数学课程标准的目标思想,这样便提示了我们掌握课标的重要性。

  在平行线的性质一课中,教师采用数学活动让学生发现结论也可按照先观察一组角∠3与∠6的位置关系,然后动手实验度量出他们的度数并给出猜想,最后再另画一条直线d与直线a、b相交,去验证学生的猜想是否正确。通过这样的方式展开研究符合学生的认知特点,能够更清晰、深刻的掌握平行线的性质1:同位角相等,两直线平行。