欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学反思

长方体和正方体的表面积教学反思12篇(长方体和正方体的表面积习题讲解)

时间:2024-02-23 21:13:25 教学反思

  下面是范文网小编收集的长方体和正方体的表面积教学反思12篇(长方体和正方体的表面积习题讲解),供大家参阅。

长方体和正方体的表面积教学反思12篇(长方体和正方体的表面积习题讲解)

长方体和正方体的表面积教学反思1

  “长方体和正方体的表面积”教学内容,是在学生初步认识了长方体和正方体特征,知道它们都有6个面、12条棱、8个顶点。长方体的每个面都是长方形,相对的面的形状相同,大小相等;12条棱分为3组;相交于一个顶点的三条棱的长,分别叫做长方体的长、宽、高,以及正方体的.6个面都是面积相等的正方形的基础上而学习的。对于表面积的概念与平面图形的面积,既有联系又有区别。同时是后继学习的基础。

  我认为表面积的概念的学习,要是通过学生对长方体特点的感知并懂得表面积的意义基础上,进行学习。学生虽然会正确求长方形的面积,但要求表面积,这是一个质的飞跃。为什么呢,因为是从平面到立体,从二维到三维。成人看似简单,而对小学生却有一定的难度。同时,小学生往往习惯于迁移,长方形面积明明是长×宽,而现在怎么变成长×高、宽×高了呢?这对于一部分学生来说,肯定存有困惑。所以要把长方体展开,变6个面为一个面,这种转化不是老师来完成,而是在学生思维中展开,因此,在前一课时就应打下一定基础:上下面:前后面、左右面等概念!对立面相等等知识点。再通过观察长方体的每一个面的面积任何计算!有没有简便方法等。

  在教学中,激发学生的学习积极性显得尤为重要!思维的活跃,积极的学习是本堂课成功的的关键。

  不足之处:在教学中、思维的发散显得不够!以至于在后来的无盖,甚至四个面计算中部分同学不理解!

  非常遗憾、值得反思!

长方体和正方体的表面积教学反思2

  上完本课以后总结出本课的下列特点:

  1、教学层次清晰。不论是复习,还是练习,都由易到难,逐步递进。而练习的设计也是注意坡度,层层深入。

  2、在复习长方体和正方体的表面积的同时,能提前渗透表面积的变化的相关知识,为后续学习做好孕伏。

  3、练习设计特色鲜明。例如,在计算横截面是正方形的长方体通风管的侧面积时,不满足于先计算一个长方形的面积,再计算四个长方形的面积,以求出长方体通风管侧面积的方法,而是继续引导学生把长方体展开成长方形,通过计算长方形的面积,求出通风管的侧面积。加强立体图形与平面图形的联系,进一步发展学生的空间想象能力。

  本课存在的问题是练习设计的综合性不够。长方体和正方体的表面积的'练习课,可以综合考虑底面积、侧面积与表面积的联系,设计练习题应融汇旧知与新知,形成知识体系。也需要通过改变题目中长、宽、高的单位名称,以提醒学生认真审题,先统一单位名称,再列式计算。总之,一道题目的设计要同时兼顾多个知识点,使每道题目的效益发挥到最大程度。

长方体和正方体的表面积教学反思3

  推荐长方体和正方体的表面积这部分内容,是一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。在教学中我给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念,感受颇深。

  让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的.特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。

  “长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。在学生在计算长方体和正方体表面积时得出三种计算方法:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积再乘以,通过对正方体表面积比较归纳,学生和我一起总结出了文字公式,并简化成字母公式,便于记忆和书写。在掌握长方体和正方体表面积的计算,体现“立体——平面——立体”螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。<

长方体和正方体的表面积教学反思4

  “长方体和正方体”一单元结束后,我上了两节复习课。教材中安排第一课内容为长方体和正方体的特征与体积单位;第二课时为表面积与体积。考虑到这样安排第一课内容显的比较少,而第二课练习时间较少,我就作了一下调整,把第二课中的表面积移到了第一课,以使第一课内容充实些,使第二课有更多时间进行拓展延伸,从而提高复习的效率。

  在“长方体和正方体的特征与表面积”这课中,对于第一板块的复习,主要以引导学生自己回忆与整理为主。课的一开始,即明确了本课复习的目标,然后让学生对照复习,归纳长方体与正方体的特征,小组内先行交流,互相补充。汇报时,教师板书成表格形式,并要求学生口述时配合手的.动作。这样一方面避免整理时的零敲碎打,提高时间利用率,另一方面使得所复习知识更为系统化,直观化,有利于掌握、巩固。对后面的多练留出足够的时间。

  在第二板块练习中,我注重了练习的层次性。对表面积计算,较之基本计算方法,我更重视了对方法本身意义的理解。让学生列出求表面积的算式,不计算,但要写出算式中每步求的是什么,这样就为后面解决相关实际问题做好了准备。在应用练习中,我让学生自己举出生活中的相关实例,帮助他们补条件后再组织练习,这样也比教师直接出示题目对学生更有吸引力。

  纵观这一课,我尽量避免了对学生发言无价值的重复与不必要的讲授,而在关键处适度点拨,突出要点,在学生掌握较好之处省下时间用以拓展练习,基本做到了精讲多练。

长方体和正方体的表面积教学反思5

  “长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识和把长方体、正方体的立体图形展开的平面基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——平面——立体”循序渐进的教学思想,并通过展形的平面图形和立体图形的联系,培养和发展学生初步的空间想象能力。新课标强调学生的学习过程是一个活动过程,因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力。所以“长方体和正方体的表面积”一课,就从这一思路出发预设、生成教学过程。

  一、从生活实际引入新课

  一个好的情境可以吸引学生的注意力,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调“要让学生在现实情境中和已有知识的.基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。在教学中我设计为捐款箱包装外表,让学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。

  二、积极实践操作,以动激思

  数学知识具有高度的抽象性,所以我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展。因此,在教学长方体表面积计算方法时,我打算先让学生动手操作,“解剖”以长方体,展示出6个面。通过比较分析深刻地体会长方体各个面积之各就是这个长方体的表面积,以及长方体6个面之间的关系,抓住了推导长方体表面积计算方法的关键,然后再让学生测出自己的长方体的长、宽、高,通过小组合作共同探索出长方体表面积的计算方法。设计是如此,但在教学中因为担心把学生一放开就收不拢完不成教学任务,所以就临时改变了教学方法,由教师统一指引下进行学习,使“以动激思”变成了“以师为主”。

  三、以练带学,自主学习

  在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道练习,让学生自主学习,由学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。

长方体和正方体的表面积教学反思6

  在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:

  前、后面=长脳高脳2;

  左、右面=宽脳高脳2;

  上、下面=长脳宽脳2.

  最后总结归纳:

  长方体表面积的计算公式:

  方法(一):S=长脳高脳2+宽脳高脳2+长脳宽脳2

  方法(二):S=(长脳高+宽脳高+长脳宽)脳2

  正方体表面积的计算公式:

  S=棱长脳棱长脳6

  在计算长方体和正方体表面积时,要考虑到以下几种情况:

  1、完整的(六个面都有)长方体或正方体

  这种类型的题目,直接套用表面积计算公式即可。

  2、无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的.表面积)

  这种类型的题目,首先要看清楚要计算的是哪几个面,然后再进行解答。

  公式:S=长脳高脳2+宽脳高脳2+长脳宽

  3、求长方体或正方体四周的表面积

  它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。

  公式:S=长脳高脳2+宽脳高脳2

  总体说来,这部分知识只要掌握了长方体和正方体的表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。

长方体和正方体的表面积教学反思7

  本课是在学生认识掌握了长方体和正方体特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看,摸一摸等来认识概念,理解概念。

  首先让每个学生准备一个长方体纸盒,把纸盒沿着棱剪开(纸盒粘接处多余的部分要剪掉),再展开,让学生注意展开前长方体的每个面,在展开后是哪个面。为了便于对照,让学生在展开后的每个面上,分别用“上”、“下”、“前”、“后”、“左”“右”标明他们分别是原来长方体的哪个面。然后,提问:长方体有几个面?哪些面的面积是相等的?引导学生联系长方体的特征回答。这里关键是根据长方体的长、宽、高,正确的判断每个面的长和宽应该是多少。让学生按照上、下、前、后、左、右的顺序,依次说出每个面的面积怎样算的。

  我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。在教学实践中,我发现对教材的深度钻研和对学生的预设显得尤为重要。课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的'面积再乘以2;还可以把侧面的四个面展开看成一个长方形求面积,再加上上下两个面的面积的巧妙方法却没有考虑到。实际生成时,学生只说出了其中的一种简便情况,通过引导学生能找出其他的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。

  实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。

长方体和正方体的表面积教学反思8

  我在设计《长方体和正方体的表面积》这节课时,主要是沿着什么是长方体的表面积——怎样求长方体的表面积——为什么求长方体的表面积这样一条线来安排教学的。

  尽管这样安排,但我认为,对于长方体的表面积,最关键的不是“什么是长方体的表面积”,也不是“怎样求长方体的表面积”,更不是“为什么求长方体表面积”,而是“每一个面的长和宽分别是长方体的长、宽、高中的哪一个”。因为,如果学生弄不清楚这一点,那么他就没有办法理解求长方体表面积的方法,弄懂了这一点,后面的求表面积的方法也就是水到渠成的事了。所以,我把这一课的重点放在了这里。在学生知道了长方体的表面积就是六个面的总面积之后,让学生自主标出长方体的“上,下,左,右,前,后”六个面,然后小组合作探究“每个面都是什么形,求每个面的面积怎么求?每个面的长和宽分是原来长方体的什么?”并记录在纸上。经过小组的合作,对于这一点学生理解得很充分。在学生汇报之后,再让学生小组共同研究长方体表面积的求法,并要求,看谁能想出不同的方法。学生兴趣高涨,不一会就研究出了各种解法:一个面一个面的加;用前(后)面面积乘二加上左(右)面面积乘二再加上上(下)面面积乘二;上(下)面面积加前(后)面面积加左(右)面面积的.和乘二。还有的学生考虑到了特殊情况,两个面是正方形的,用上面面积乘四加上左面面积乘二。虽然还有的方法没想到,但是这些方法我觉得已经足矣。

  实践表明,我这样是正确的,我班学生对表面积这一块理解掌握比较好,即使是后三分之一学生也大部分掌握了它的求法。所以,深深的觉得,每一节数学课,抓住难点,抓住重点,是十分关键且必要的,通常会起到事半功倍的效果。

长方体和正方体的表面积教学反思9

  出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?(鱼缸的上面没有玻璃)

  一起分析题意后,学生列式计算。

  生1:先算出6个面的总面积,再减去上面的面积。(5×3.5+3×3.5+5×3)×2-5×3

  生2:先求出前后、左右、下面的面积,再相加。式子是:5×3.5×2+3×3.5×2+5×3

  生3:我的方法和刚才的基本相同,列式上可以再简单些:(5×3.5+3×3.5)×2+5×3

  三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。

  我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。

  他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3

  咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的含义吗?

  我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。

  但其余同学被他的思路启发后,思维一下子打开了。

  一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的高,所以这个长方形的`面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。

  该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。

  [反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少平方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。

长方体和正方体的表面积教学反思10

  长方体表面积的计算是在学生认识并掌握了长方体和正方体特征的基础上教学的。本节课让学生自己去尝试,发现长方体表面积的不同计算方法。学生学得轻松、愉快而扎实。让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生的已有知识,提出问题,解决问题。使学生在讨论、探索、思考、表达、交流中得到发展,课后反馈效果很好。

  在思考、讨论中步步为营。在教学中,对长方体表面积的计算,教师从学生已有经验长方体的认识引入,先让学生回顾长方体的特征,如:让学生拿出准备的长方体纸盒,按照一定的位置在六个面上分别表明前、后、左、右、上、下;想一想:根据长方体棱的特征,我们可以八长方体的.12条棱分成几组?怎么分?为什么?同桌之间互相指一指长方体的长、宽、高等。在每一个细小问题的思考、讨论、交流中都给学生足够的时间和空间,让学生自主地对每个环节知识的掌握都落实到位,并为后面的知识作好循序渐进的铺垫,让学生在这种环环相扣、步步为营的学习过程中,顺其自然地掌握方法、解决问题、获得发展。

长方体和正方体的表面积教学反思11

  《长方体和正方体的表面积》这节课是在学习了长方体和正方体的特征,长方体和正方体的展开图的基础上进行的。也就是学生已经对长方体特征及其展开图有了较深的了解基础上,学习长方体的表面积及其计算的。因此,在本节课的教学中以学生自主探索为主,教师适时点拨。

  这节课的重点是理解长方体(正方体)的表面积概念及其计算方法,并能正确计算;难点是正确建立表面积的概念.计算长方体表面积的关键是找出每个面的边长(长和宽)。上课的时候直接揭题并板书本节课的内容。然后学生完成书第8页的第一题,通过这题,学生了解长方体的长、宽、高与各边之间的关系,为计算各个面的面积作了准备。学生已有了一定的知识准备,但不能上升到公式化的'高度。这时,通过例4的学习后,学生根据前面的知识,就归纳出长方体的表面的计算,可以用长方体的长、宽、高来表示出来。这节课的学习达到了本节课的教学要求。但在一些细节方面还需要做改正:如对长方体表面的概念这一环节的教学,在讲完这个概念后,应该让学生拿出他们的长方体纸盒来摸摸以加深理解和印象,有在归纳出长方体表面的公式后,应该回到一开始的图上,让学生说一说每一部分求什么,以达到加深学生理解的目的,这些都是在以后备课和上课中要注意和更细致一些的地方。

长方体和正方体的表面积教学反思12

  1、侧重学生解决生活实际问题能力的培养

  以前我在上这节课的时候,第1课时是没有教学实际问题中求五个面的情况。我发现在第1课时就解决实际生活中求五个面的问题有两点好处:一是如果第一课时都是让学生求长方体、正方体六个面的,再让学生去解决实际生活中求五个面、四个面的问题,难度会增加。因为学生会受到定势思维的影响;二是提高了学生灵活运用知识解决问题的能力。如2、一个正方体的木箱,棱长4分米,做这个木箱至少用多少平方米木板?和3、老师想做一个玻璃鱼缸,它的形状是正方体,棱长3分米。制作这个鱼缸至少需要玻璃多少平方分米?这两题让学生一起去做,学生在解题过程中,能提高他们的审题、辨题能力,也是学生思维的操练。

  2、旧知的必要复习,为学生新知的学习打好基础

  让学生介绍手中的`长方体,从而复习长方体的特征。再通过让学生摸长方体的各个面、闭上眼睛想长方体在学生头脑中建立模型。最后让学生摸长方体的每个面,说出求每个面面积的方法,找出长方体每个面的面积与长方体的长、宽、高之间的关系。突破了本节课的教学难点,使长方体表面积的计算方法水到渠成。