欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学反思

分数墙教案3篇 分数墙教学反思

时间:2024-06-01 15:06:00 教学反思

  下面是范文网小编分享的分数墙教案3篇 分数墙教学反思,供大家阅读。

分数墙教案3篇 分数墙教学反思

分数墙教案1

  教学准备

  一、教学目标

  1、利用分数墙直观地建立数学模型,用于分数大小比较,同分母分数加、减法计算,找到相等的分数。

  2、培养学生的动手能力,渗透数形结合思想。

  3、体会数学知识的互通性,激发学生探究欲望。

  二、教学重点/难点

  教学重点 利用分数墙复习分数大小比较和分数加减法。

  教学难点 对相等分数的初步直观探究。

  三、教学用具

  教学课件

  四、标签

  教学过程

  一、 新课导入:

  1、出示“分数墙”,认识“分数墙”

  师:仔细观察一下“分数墙”,你看到些什么?

  (颜色,每一份大小,里面有几个,??)

  2、提出课题:

  师:“分数墙”能帮助我们比较分数的大小,计算同分母分数加、减法,所以它是我们的好朋友。

  今天我们一起来研究分数墙。

  二、 新课探索:

  1.探究一:

  a) 用分数墙来比较分数的`大小

  师:说说你是怎样利用分数墙比较分数的大小?(在同一行横着看)

  (学生可以通过比较涂色部分长短的方法来比较分数的大小)

  b)用分数墙来比较分数的大小

  师:现在,你又是怎样利用分数墙来比较大小呢?

  (在分数墙上找到上面每组中的2个分数,哪个分数在“墙”的左边,这个分数就大小)

  (设计说明:学会用分数墙比较两个分数的大小的方法)

  练习:师:根据刚才的学习,很快比较出下面每组分数的大小。

  2.探究二:用“分数墙”来计算分数的加减法

  1)出示

  2)出示:那么这一题又如何思考?

  (设计说明:利用分数墙来计算同分母分数加、减法)

  练习:

  学生练习,说说算理

  师:刚才我们通过学习,知道利用分数墙可以进行分数大小的比较,可以进行同分母分数加、减法的计算,而分数墙还有一个大特点,你知道是什么?

  3.探究三:在分数墙上找出相等的分数

  1)师:怎样在分数墙上找出相等的分数?

  (不同颜色的格子起点和终点都对齐,那么这两个分数就是相等分数。)

  2) 师:找一找,有哪些相等分数?

  a)学生观察

  b)交流,老师板书一些相等的分数。

  (设计说明:学会利用分数墙找到相等的分数)

  练习:学生用划直线的方法找出相等的分数并写下来。

  一、 课内练习:

  听故事:小熊们最喜欢吃熊爸爸做的饼。有一天,熊爸爸做了三块大小一样的饼分给小熊们吃,它先把第一块饼平均切成四块,分给小熊一块。中熊见到说:“太小了,我要两块。” 熊爸爸就把第二块饼平均切成八块,分给中熊两块。大熊更贪,它抢着说:“我要三块,我要三块。”于是,熊爸爸又把第三块饼平均切成十二块,分给大熊三块。小朋友,你知道哪只小熊分到的多? 出示:

  3块同样大的饼,

  小熊:第一块饼平均切成四块,分到一块;

  中熊:第二块饼平均切成八块,分到二块;

  大熊:第三块饼平均切成十二块,分到三块。

  师:你知道哪只小熊分到的多?为什么?(结合分数墙说明这几个分数大小相等)

  课堂小结

  今天你有什么收获?说说分数墙对我们有哪些帮助?

分数墙教案2

  一、教学目标:

  1、使学生认识百分数。

  2、了解百分数的意义。

  3、会写百分数。

  4、区分百分数与分数的不同。

  5、让学生在各种活动中,培养比较、分析、分辨的能力。

  二、教学重难点:

  理解百分数的意义

  三、教学过程:

  (一)、引出百分数,教学百分数的读法。

  1、百分数的引出

  师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)

  师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?

  2、揭题

  生展示他们找到的百分数。

  师有选择的板书并小结:看来生活中这样的数确实挺多的'。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。

  (二)、凸显百分数的优点,教学写法

  1、比较中凸显百分数的优点

  师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)

  年级 总人数 近视人数 近视人数占总人数的 近视率

  二年级 20 2

  三年级 25 3

  师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。

  学生反馈:可能会出现通分成分母是50的,也可能是100的。

  师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)

  2、教学写法

  师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。

  (三)、百分数意义、

  1、指导着说百分数的意义

  师:三年级的近视率12%指的是哪两个数之间的关系?

  师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)

  师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)

  2、生自主说

  师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64.2%分别表示什么意思呢?自己轻轻地说一说。

  生反馈说,师选择小学生近视率表示意义板书。

  师:看到这些信息,你想说什么呢?

  3、小组内说

  师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?

  生反馈,师挑选组的代表说,并板书。

  4、小结百分数意义

  师:说了那么多百分数的意义,那么到底百分数表示什么呢?

  师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)

  (四)、辨别百分数与分数区别

  1、辨别

  师:我们来看看下面的百分数是表示谁是谁的关系呢?

  出示:

  鸡的只数是鸭的75%

  一根绳子的长度是一根铁丝的51/100。(51/100可以改写成51%吗?)

  出示:

  一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)

  2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。

  3、加深理解进行判断

  (1)一段绳子长29/100;

  (2)一段绳子长29%米;

  (3)分母是100的分数都是百分数;

  (4)百分数的分母都是100

  (五)、巩固练习

  师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?

  1、写出下面的百分数

  百分之一 百分之二十八 百分之零点五

  2、读出下面百分数,想想下面的信息给了你哪些启示?

  (1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。

  (2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0.5%。

  (3)今天我们班同学的出勤率是100%。

  四、教学结束:

  课堂总结

  师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感

  同学们对于学习也要付出努力,不怕辛苦。

分数墙教案3

  教学内容:

  教科书第60~61页,例1、例2、

  练一练,练习十一第1~3题。

  教学目标:

  1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

  2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

  教学重点:

  让学生在探索中理解分数的基本性质。

  教学过程:

 一、导入新课

  1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

  2、出示例1图。

  你能看图写出哪些分数?你是怎样想的?说出自己的想法。

  二、教学新课

  1、教学例1。

  (1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

  (2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

  (3)演示验证。

  2、教学例2。

  (1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

  (2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

  (3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  (4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

  (5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的`基本性质。板书课题:分数的基本性质。

  (6)为什么要“0”除外呢?

  (7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

  (8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

  3、完成练一练。

  (1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

  (2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

  三、巩固练习

  1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

  2、完成第2题。独立完成,交流想法。

  四、课题总结

  今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?