下面是网友“caijielunchenju”收集的认识成正比例的量的教学反思(5篇),以供借鉴。
认识成正比例的量的教学反思 篇1
教学目标
1.使学生理解正比例的意义.
2.能根据正比例的意义判断两种量是不是成正比例.
3.培养学生的抽象概括能力和分析判断能力.
教学重点
使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习准备
口答(课件演示:)
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、新授教学
(一)导入新课
这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.
(二)教学例1.(课件演示:)
1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米……
2.出示下表,并根据上述内容填表.
一列火车行驶的时间和路程
时间(时)
……
路程(千米)
……
3.思考:在填表过程中,你发现了什么?
(1)表中有时间和路程两种量.
(2)当时间是1小时,路程则是90千米,
时间是2小时,路程是180千米……
时间变化,路程也随着变化.
时间扩大,路程随着扩大;时间缩小,路程也随着缩小.
教师说明:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关
联的量.
教师板书:两种相关联的量
(3)请每位同学先取一组相对应的数据,然后计算出路程与时间的比的比值.
教师板书:
(4)教师提问:根据计算,你发现了什么?
教师说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”
教师板书:相对应的两上数的比值一定
4.教师小结
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小.它们扩大、缩小的规律是:路程和时间的比的比值总是一定的.即
教师板书:
(三)教学例2(继续演示课件:)
例2.在一间布店的柜台上,有一张写着某种花布鞋的米数和总价的表.
时间(时)
1
2
3
4
5
6
7
……
路程(千米)
……
1.观察上表
(1)表中有数量(米数)和总价这两种量,它们是两种相关联的量.
(2)总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小.
(3)相对应的总价和米数的比的比值是一定的.
教师板书:
2.师生小结
通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?为什么?
怎样变化?它们扩大、缩小的规律是怎样的?
教师板书: (一定).
(四)抽象概括正比例的意义.
1.比较例1、例2,思考并讨论,这两个例子有什么共同点?
(1)例1中有路程和时间两种量;例2中有米数和总价两种量.即它们都有两种相关联的量;
(2)例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化.
教师板书:一种量变化,另一种量也随着变化.
(3)两种量中相对应的两个数的比值(也就是商)一定.
教师板书:两种量中相对应的两个数的比值(也就是商)一定.
2.小结
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做,它们的关系叫做正比例关系.
板书课题:
3.字母关系式
教师提问:如果字母 和 表示两种相关联的量,用 表示它们的比值,正比例关系怎样用字母表示出来?
教师板书: (一定)
4.教师质疑:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
(五)教学例3(继续演示课件:)
例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
1.根据正比例的意义,由学生讨论解答.
2.汇报判断结果,并说明判断的根据.
(六)反馈练习.
出示图片:做一做1
三、课堂小结
通过这节课的学习,你们都知道了什么?怎样判断两种量是否成正比例?
四、课堂练习(课件演示:)
判断下面每题中两种量是不是成正比例,并说明理由.
1.苹果的单价一定,购买苹果的数量和总价.
2.轮船行驶的速度一定,行驶的路程和时间.
3.每小时织布米数一定,织布总米数和时间.
4.小新跳高的高度和他的身高.
五、课后作业
思考:正方形的边长和周长成正比例吗?
正方形的边长和面积成正比例吗?
六、板书设计
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做,它们的关系叫做正比例的关系.
例3.每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
面粉总重量和袋数是两种相关联的量,因为 (一定),所以面粉的总重量和袋数成正比例.
认识成正比例的量的教学反思 篇2
教学内容:
数学六年级下册第48页“练一练”和练习十一的第1、2题 教学目标:
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。
2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。 教学重点:
使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。
教学难点:
使学生理解比例尺的意义,会求一幅图的比例尺。
设计理念:
本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。
一、设置情境,比较引入
演示:出示两张大小不同的中国地图。
学生观察
师:通过观察,你发现了什么?什么变了?什么没变? 学生回答。(可能出现:形状没变、大小变了。)
师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。
(板书课题:比例尺)
二、自主探究,认识新知
1、出示例6。
学生读题,理解题意,尝试写出两个数量的比。
师:题中要我们写几个比?这两个比分别是哪两个数量的比? 什么是图上距离?
什么是实际距离?
2、 认识探索写图上距离与实际距离比的方法。
师:图上距离与实际距离的单位不同,怎样写出它们的比? 学生交流,明确方法:
把图上距离与实际距离的单位统一成相同单位,写出比后再化简。 (学生独立完成后,交流写出的比,强调要把写出的比化简。)
3、比例尺的意义及求比例尺的方法
师:像刚才写出的`两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。
题中草坪平面图的比例尺是多少?
师:怎样求一幅图的比例尺?
学生在小组里说说,再全班交流。
根据学生的回答,相机板书:
图上距离:实际距离=比例尺
4、进一步理解比例尺的实际意义。
师:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。你是怎样理解这幅图的比例尺的?
学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。
指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。
5、认识线段比例尺
比例尺1:1000还可以用下面这样的形式来表示。
0 米 师介绍线段比例尺。
问:图上1厘米表示实际多少米?3厘米呢?
指出像这样的比例尺通常叫做线段比例尺。
四、独立练习,巩固提高
1、做“练一练”第1题。
独立相互说,指名说。先说说每幅图中比例尺的实际意义。
2、做“练一练”第2题。
学生各自测量、计算,再交流思考过程。
3、练习十一第1题。
学生独立解答,巩固比例尺计算的基本思考方法。
五、总结评价,生活延伸
1、你学会了什么?你有哪些收获和体会?
2、在生活中找找,哪些会用到比例尺?
板书
比例尺的认识
图上距离:实际距离=比例尺
1:1000
0 米
《认识比例尺》教学反思
认识比例尺是在学习比和比例的意义及其基本性质的基础上进行教学的。通过本课的学习,让学生理解比例尺的意义,学会求平面图的比例尺。本课的重点是让学生理解比例尺的意义,学会求比例尺。
在引入阶段,我选取了学生们非常熟悉的典型的感知材料:出示两幅比例尺不同的中国地图,让学生仔细观察:“什么变了,什么没变?”进而抓住比例尺的特性:图形的大小可以随意改变,但形状不能改变。激发了学生的好奇心和求知欲。
在教学例6时,以“这里比例尺1:1000是什么意思”的提问引起学生猜想、议论。为后面学习计算实际距离、图上距离打下知识准备。最后归纳出比例尺的概念。
在教学数值比例尺后,又引导学生学习了线段比例尺,让学生小组讨论,认识到两者之间的区别和练习,对比例尺的知识有更深的认识,为后面的有关比例尺计算的实际问题做了很好的铺垫。
探究比例尺的实际应用时,时间比较紧张,学生虽基本完成了这个问题,但来不及反馈,导致基础知识和基本技能的落实还不够扎实。在今后的教学中,应尽量把课堂交给学生,让学生成为课堂的主体。
认识成正比例的量的教学反思 篇3
教学目标:
1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
认识比例尺的意义。
教学难点:
求一幅平面图的比例尺。
板书
比例尺
(1)厘米:95米=:9500=1:1000
6厘米:60米=6:6000=1:1000
(2)19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
图上距离 :实际距离=比例尺
教学过程:
(包括导引新课、依标导学、异步训练、作业设计等)
一、生活原型再现
师:(出示孙楠同学的照片)你们认识他吗?他是谁?
生:孙楠。
师:怎么可能呢?照片上的人这么小,怎么会是他呢?
生:是缩小了……
师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?
生:不像他了,像丑八怪……
师:那怎样才能像他呢?
生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?
生:不像,要缩小相同的倍数。……
二、创设情境,以疑激思
同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。
出示:足球场:长 95米,宽60米。 学生作图。
三、 独立探究,合作交流。
1、通过学生讨论,引出学习要求。
(1)确定图上的长和宽的长度;
(2)画出足球场的平面图;
(3)写上图上的长和宽的长度;
(4)分别写出图上长、宽与实际长、宽的比,并化简。
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。
2、学生小组学习。
3、学生汇报设计思路。
生1:我是把实际的长和宽都缩小1000倍,图上的长就是厘米,宽就是6厘米,这样的.长方形图就是足球场的平面图。……
(根据学生的汇报板书)
图上距离:实际距离
(1) 厘米:95米=:9500=1:1000
6厘米:60米=6:6000=1:1000
(2) 19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
4、揭示比例尺的意义。
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 :实际距离=比例尺
师:1:500的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/500;
表示实际距离是图上距离的500倍;
图上距离和实际距离的比是1:500;
图上1厘米表示实际距离5米,
介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。
四、加深理解,拓展应用。
(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?
(2)辨析:比例尺是一把尺吗?
(3)比例尺一般出现在什么地方?(地图上或平面图上)
(4)出示山东省主要城市位置图。
师:在这张地图上,你去过什么地方?
师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?
生:比例尺。出示比例尺 1∶
生:图上距离。
师:给你一把尺子能解决这个问题吗?
学生尝试解决。
交流:
生1:在这幅地图上,我用尺子量得烟台到泰安的距离是 厘米,根据比例尺图上1厘米表示实际距离80千米,×80=440千米。
生2:根据实际距离是图上距离的倍,可以用
×=厘米=440千米
生3:根据图上距离是实际距离的1/,也可以用
÷1/=×=厘米=440米
生4:老师,也可以用方程来解。
解:设烟台到泰安的距离是x厘米。
1:=:x
x=
厘米=440千米
师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?
生:小时
师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?
一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”
忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……
五、反思体验 拓展完善
1、学生谈自己的收获,总结本节课的内容。
2、你还想知道什么?
六、作业设计
自主练习:2、3
教学后记:
(包括达标情况、教学得失、改进措施等)
上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。
(1)在学生已有的经验上学习数学
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。
(2)让学生经历了知识的形成过程
只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。
(3)让学生密切联系了生活实际
数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。
认识成正比例的量的教学反思 篇4
这一教学内容是在教学过比和比例等知识的基础上进行教学的,着重使学生理解正比例的意义。比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是比和比值。两个数相除叫做这两个数的比,所得的商叫做比值。比有两种写法,一种是比号写法,另一种是用分数写法。只有比值一样的两个比才能组成比例。从内容上看,“成正比例的量”这一内容,在整个小学阶段是一个较抽象的概念,他不仅要让学生理解其意义,还要学会判断两种是否是成正比例的量,根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。
首先,让学生弄清什么叫“两种相关联”的量,我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。
其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,路程和时间的比值是一样的,都是90米。让学生理解相对应的路程和时间的比值都是90米,从而突破了正比例关系的第二个难点,两种量中相对应的两个数的比值一定。把学生对成正比例的.量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比例1来自己理解数量和总价的正比例关系。
最后,在两个例题学习的基础上总结出成正比例量的意义,教材中这个概念比较长,所以对于学生来说要真正完整的记忆下来是比较困难的,特别是对一些学习困难的学生。所以我结合每个关系式,让学生找相关联的两个量,它们是怎么样变化的,比值有什么特点,这样对应去理解每句话,最后达到真正理解正比例的意义。把这个意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。然后,老师举例子说明,并且请学生互动找例子。
对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,学生印象比较深刻,但是还是有一部分数量关系学生掌握的不理想,在后面的练习中体现了这一点,因此还应该多练习一些常见的数量关系,进一步把”正比例”这一知识点掌握扎实。
认识成正比例的量的教学反思 篇5
星期五上了一课《正比例的意义》,上完课听了老师们的点评,感受颇多,受益匪浅,对于备课时遇到的许多矛盾也豁然明朗了。
这是一堂概念课,全新的概念传授,在这之前学生没有任何这方面的基础,得出概念必定要引导学生逐步发现规律。原先的备课就直接出示例题,让学生通过填表,再通过一个个的小问题的问答逐步发现。如果在一堂公开课上直接就这样上,是不是不太能充分体现课改理念。于是,就创设了这样一个情境:
师:本周一我校第三届读书节拉开了帷幕。“六(4)班有一位李明同学,今年13岁,身高米。上星期天,他专门骑自行车以每小时15千米的速度到市图书馆去购买图书,行了3小时,买了4本单价为12元的《青铜葵花》,用掉60元,还剩40元。”
师:同学们,你能从中找出哪些数量? 围绕这几组数量关系师出示了四张统计表
表一:李明骑自行车的路程和时间如下表
表二:《青铜葵花》总价和单价统计如下表
表三:李明买书用去的钱数和剩下的钱数统计如下表
表四:李明的身高和年龄情况如下表
(让生逐一填写完整。其中表四的空格要求学生通过预测完成)
师问:从这四张表中,你发现了什么?能不能根据你的发现给这四张表分分类?
设计意图:将多种数量整体融合在一个学生熟悉的生活情境中,是为了让学生进一步感知数学问题来源于现实生活。将表格填写完整的过程是为了学生初步意识到每张表格中两个量之间的关系。给这几张表格分类是为了让学生区别开什么是“相关联的量”、什么是“比值一定”,在比较区别的过程中让学生逐步掌握判断两个量能否成正比例的两个必备条件。
陈老师点评:老师课前做了精心准备将所有的问题集中在一个生活情境中,这样的设计是不错,但有些细节应注意,如作为15岁的李明骑了3小时去买书,有点不符合实际,如果改成乘车去买书,同样达到设计意图,又符合实际;学生在预测李明40、60岁的年龄时不一定就一个答案,在一定的范围内左右应该也认同,不能全盘否定。
罗主任点评:一开始就抛出这四张表让学生去比较,这样的安排顺序混乱。学生对于成正比例关系的`两个量是怎样一种模式、具体概念还没有形成之前,后面两张表的出现会影响学生对新知掌握,应让学生在掌握好概念后,在强化训练的基础上再出现后两张表让学生去判断。如果我上的话,就直接出示书中的表格(例1、2),填完整的基础上比较它们的共同点,引出正比例的概念……
反思:怎样判断一堂课成功与否,关键看效果。按照我这样的设计,中上等学生应该是掌握的不错,那后进生呢?与主任的上课设计两相比较,可能后者的设计使后进生更容易掌握,掌握的更扎实。不管是平时的随堂课还是领导来听的公开课,“真实有效”才是我们的课堂追求,不能因为追求某种形式,而忽略学生的掌握过程。