欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学设计

分数的基本性质教学设计(汇编9篇)

时间:2023-08-02 09:12:24 教学设计

  【简介】本文是网友“ixkvi110”整理的分数的基本性质教学设计(汇编9篇),供大家阅读。

分数的基本性质教学设计

分数的基本性质教学设计 篇1

教学目的:

  1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2、理解和掌握分数的基本性质。

  3、较好实现知识教育与思想教育的有效结合。

教学难点:

  理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

教学准备:

  板书有关习题的幻灯片。

教学过程:

  一、复习

  1、出示

  在括号里填上适当的数:

  指名说一说结果,并说一说你是根据什么填的?

  二、课堂练习:

  1、自主练习第4题。

  学生先独立做,教师巡视,并个别指导,集体订正。

  教师板书题目中的线段,指名让学生板演。

  在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

  怎样找出相等的分数?

  让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

  然后要求学生在书上把这几个相应的点找出来。指名板演。

  2、自主练习第5题。

  先让学生独立做,教师巡视。个别指导。

  指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

  教师根据学生的回答选择几个题目进行板书。

  3、自主练习第6题。

  先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

  集体订正。指名说一说自己的计算过程和结果。

  教师根据学生的回答选择几个题目进行板书。

  4、自主练习第7题。

  学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

  集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

  5、自主练习第8题。

  学生先独立做。

  集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

分数的基本性质教学反思 篇2

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点之一。反思本节课,我认为以下几点做得较成功:

(1)新课的引入新颖,一上课,先听一段故事,学生十分乐意,并立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的`基本性质。教师环环紧扣的提问以及引导学生逐步展开的充分的讨论,帮忙学生一步步得出结论。

(2)重视学生潜力的培养,知识力求让学生主动探索,逐步获取。在教学中,教师为学生带给了自主探索的机会,通过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括潜力、动手操作潜力和口头表达潜力,充分体现学生的主体作用。

(3)课堂练习形式多样,有层次,有梯度,目的性、针对性较强,到达了巩固知识、培养技能、激发兴趣、发展思维的目的。

  本节课出现的问题也很多:

  首先,在折纸交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。

  其次,在构成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等进行了整合,只有部分学生了解,没有深入到全班。

  还有,“把每一份平均分成几份”这句话描述不够清晰,学生理解有困难,能够在课件中完善。

《分数的基本性质》教学设计 篇3

《分数的基本性质》是人教版小学数学五年级下册的资料,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用"猜想和验证"方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分资料我是这样设计教学的:

一、迁移引入,沟通新旧知识的联系。

  学习分数的基本性质能够利用商不变的性质进行正迁移,所以我在复习环节时出示:"12÷4=3120÷40=÷400=3,问:观察这三道算式,你回忆起以前学过的什么规律根据除法和分数的关系,猜猜看分数也有这样的规律吗帮忙学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

二、用故事情景引入,增强解决问题的现实性。

  教学一开始,就以一段故事《三个和尚分饼》引入课题,这样不仅仅激发了学生的学习兴趣,更调动了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参与到对新知识的探究过程中,把抽象的分数基本性质具体化了。然后,我抓住分数基本性质的本质属性,通过让学生动手操作来发现三个分数之间的相等关系,之后引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么那里的相同数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察潜力、动手操作潜力、逻辑思维潜力和抽象概括潜力的培养。

三、运用知识,解决实际问题。

  先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数你能写几个写的完吗在写的时候,你是怎样想的1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4…的时候,b分别=a和b为什么有怎样的关系为什么有这样的关系呢并培养学生运用所学的知识解决实际问题的潜力。本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子,如果能有把这两个规律之间的转化采用举例、填空的形式,能给学生以直观的体验,胜过用语言的描述。

分数基本性质教学设计 篇4

《分数的基本性质》这一模块的主要资料是理解分数的基本性质,并根据分数的基本性质使一个分数的分子和分母同时扩大或缩小为以后学习分数的约分和通分打基础,同时,也为以后学生学习分数加减法打基础。

  在学习这一部分知识前,学生已经学习了分数的意义,掌握了分数与除法的关系,那么在以前已经学习过了除法商不变的性质,讲分数的基本性质,从商不变的性质入手,学生学习起来就不会很吃力。在那里,我首先举了一个除法的例子,如:32除以4,学生口算出商为8,然后学生进行被除数()和除数同时扩大或缩小相同倍数的练习,回忆起以前学过的商不变的性质,在那里,教师特别强调了0除外的意义。

  在对商不变的性质进行复习后,引出前面刚刚学习过的分数和除法的关系,由学生自我总结出分数的。基本性质,如:32除以4就能够写成分数四分之三十二,经过被除数就是分子,除数就是分母,得出在商不变的性质能够转化成分数的基本性质。学生很容易的就理解了分数的基本性质。

  随后,对分数的基本性质进行一些相关练习,加深学生对这个性质的理解和运用。

分数的基本性质教学设计 篇5

“分数的基本性质”是人教版小学数学五年级下册的内容,在小学数学学习中有着承前启后、举足轻重的作用。它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。基于这部分知识是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。所以这节课我采用“猜想——验证——反思”的一种研究性学习方式。

1、迁移引入,沟通新旧知识的联系。

  学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始我设计了两组练习题,一组是利用除法中商不变的性质来解决,一组是利用分数与除法的关系来解决。为新知识的学习奠定基础。同时也在头脑中形成表象,便于学生学习下面的分数的基本性质。

2、充分发挥学生的主体作用。

  在教学分数基本性质时,并没有把这个性质灌输给学生,而是让学生在自主探究的过程中自己感悟。我先是让学生根据大屏幕上的涂色部分说出用哪个分数来表示,又让观察两个分数的特点,学生自然而然的得出两个分数相等。然后利用小组合作学习,在这些相等的分数中猜测,寻找分子、分母的变化规律,初步得出分数的基本性质。接着我又利用图形与学生一起验证他们所得出结论。这样的活动使得学生始终处于积极思考的状态,不但保持学习的积极性,而且增强了学生学习的自信心,使他们感到我会学,我能行。

  当然,本节课出现的问题也很多:首先,在验证、交流环节学生们参与率并不高,在交流时也不主动,很多学生还停留在一知半解的状态。其次,猜想的验证过程过于单一,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。第三、在小组合作交流方面:本节课的设计中有两处合作交流:一个是在验证猜想时合作。另一个是在发现规律时合作探究,交流沟通。但学生的交流流于形式,没有起到真正的知识碰撞的效果,在今后的教学中对这个问题有待进一步的改进。第四,就像教研员张老师所说,我还是不够充分地信任孩子们,还是我说的太多,而学生说的少,放手的力度不够。

  这节课上完后,我感触颇多,教学真的是一门永远留有遗憾的艺术,在以后的教学中,我一定会追求更务实的课堂。从学生的实际出发,因地制宜,提高自己的课堂驾驭能力。

分数的基本性质课程教学设计 篇6

“找规律”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的,对这部分资料我是这样设计教学的:这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅仅对学生提出了挑战,而且对老师也提出了更大的挑战。用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。最后运用知识,深化对分数的基本性质认识,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的潜力。

  找规律是义务教育课程标准实验教科书第十册第三单元资料,这节课是在学生学习了分数的`好处基础上进行教学的,通过观察,合作探究总结出分数的基本性质,本节资料是为以后学习约分和通分打基础,在教学中教师注重“过程与结果的结合”,“合作学习与自主学习”的结合,“创设情境与创新精神”的结合,教学中,教师用生动搞笑的故事引入新知,激发学生学习的兴趣,使学生感到学习新知很有兴趣,不枯燥无味。巧妙地创设问题情境,让学生产生迫不及待地要求获取新知识的情感,再通过拓展外延,从具体事例中抽象出事物的内在规律,这一环节重点在掌握了学生的认识规律基础上,强调知识的来源,让学生自己挖掘规律,掌握数学知识产生的内在规律,激发起学生用心思维的动机。

  通过小组的合作以及教师的引导,发现规律,总结规律,促进了学生相互帮忙,相互启迪,相互促进,发挥了讨论交流的作用,提高了学生学习的潜力。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知的理解,强化了学生运用新知解决实际问题的潜力,使学生构成了必须的技能技巧。

《分数基本性质》教学设计 篇7

  教学目标:

  情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

  知识技能:理解分数的基本性质,并且能够灵活应用。

  过程方法:动手操作、观察、讨论

  教学重、难点:理解并掌握分数的基本性质并灵活应用。

  教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

  学具准备:拼图12组。

  教学设计理念:

  《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

  教学过程:

  一、 创设情境,激趣导入。

  设计意图:让学生在喜闻乐见的.游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

  师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

  请看拼图要求:1、用所给材料拼成三个完全一样图形。

  2、用分数表示阴影部分占整幅图的几分之几,并写出来。

  二、合作交流,探究规律。

  设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

  (一)拼图,写分数。

  (1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

  (2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )

  (二)找分数间的大小关系。

  (1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

  (2)汇报:每组中三个分数大小相等。

  比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

  (三)探究规律

  (1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

  (2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

  (3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。

  (4)师结合图依据分数的意义讲解变化规律。

  (5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

  (四)对比分数的基本性质和商不变的性质。

  学生对比,说出两个性质间的区别与联系。

  三、应用。

  设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

  1、填空

  (1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

  2、比较 和 的大小。

  四、游戏"找朋友”。

  设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

  同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

  ,五年级数学分数的基本性质教学设计

《分数基本性质》教学设计 篇8

  教学目标:

  1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  学习目标:

  1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

  重点难点:

  1、使学生理解分数的基本性质。

  2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  过程

  一、激情导入

  1、导入课题

  生读故事。

  唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

  师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

  2、明确目标

  理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

  3、预期效果

  达到教学目标

  二、民主导学

  任务一

  任务呈现

  动手操作验证性质

  自主学习

  师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

  1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

  2、仔细观察三张纸的涂色部份,你们能发现什么?

  师:同位分工合作完成。现在开始。

  师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

  请二至三位同学说一说。

  师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

  生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

  师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

  下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

  生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

  请二名同学重复。

  师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

  生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

  请一至二名同学回答。

  师板书:分数的分子分母同时乘相同的数,分数的大小不变。

  师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

  师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

  请一同学回答,

  生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

  师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

  生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)

  师板书:或者除以

  师:你能根据刚才总结的规律举一个例子吗?

  让三名学生举出例子,师板书。并问:分子分母同时除以了几?

  展示交流

  师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

  生:不成立,

  师:为什么

  生:因为0不能作除数,

  师:0不能作除数,所以这个式子是错误的。(画叉)

  师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

  生:不成立,因为在分数当中分母相当于除数,除数不能为0。

  师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话

  生:0除外

  师板书0除外

  师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

  生:同时和相同的数

  师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

  师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

  生齐读二遍。

  师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

  任务二

  任务呈现

  课本76页的例2,请一同学读题。

  自主学习

  生独立完成,完成后和同位的同学说一说你是怎样想的。

  展示交流

  每题请二名同学回答,(集体订正答案)

  检测导结

  1、目标练习

  76页“做一做”

  练习十四的1、2、6、7题

  2、结果反馈

  生做完后同桌交流,再指名说说结果。

  3、反思总结

  今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

  三、辅助设计

  教具课件设计

  小黑板正方形纸数块

  板书设计

  分数的基本性质

  练习和作业设计

  1、完成课本76页做一做中的1、2题。

  生独立完成,师指名回答。

  2、完成练习十四中的1、2、5、6、7题。

  师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本性质教学设计 篇9

  教学目的:

  1、理解和掌握分数的基本性质。

  2、理解分数的基本性质与商不变规律的关系。

  3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

  4、应用分数的基本性质解决简单实际问题。

  5、正确认识、处理变与不变的的辨证关系。

  教学重点:

  掌握分数的基本性质。

  教学难点:

  抽象概括分数的基本性质。

  教具学具准备:

  多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

  教学步骤:

  一、1、复习旧知

  除法与分数之间有什么联系?

  被除数÷除数=被除数

  除数

  1)、你能用分数表示下面各题的商吗?

  1÷2=()3÷6=()5÷10=()4÷8=()

  2)、根据400÷25=16在□里填数:

  (400×4)÷(25×4)=□

  根据360÷90=4在□里填数:

  (360÷□)÷(90÷10)=4

  (2)你是怎样想的?(回忆除法中商不变性质)

  商不变的性质内容是什么?

  3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

  2、激趣引入:和尚分饼

  从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

  你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

  这几个分数真的相等吗?让我们做个实验来证明。

  3、操作感知:

  (1)请同学们拿出三张大小相同的长方形纸条。

  通过实验、观察、分析、讨论

  ①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

  ②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

  ③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

  然后看涂上颜色的部分是不是一样大。这说明了什么?

  引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

  二、比较归纳揭示规律

  比较这三个分数分子和分母,它们各是按照什么规律变化的?:

  1、说说这三个分数的意义。

  2、总结规律:

  (1)从左往右观察:

  a、观察手中第一、第二张纸条。

  发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

  b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

  板书:1/2=1×3/2×3=3/6

  c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

  (2)引导学生观察、讨论:

  从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

  学生边回答边板书:3/6=3÷3/6÷3=1/2

  2/4=2÷2/4÷2=1/2

  并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

  3、抽象概括归纳性质

  (1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

  (2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

  分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

  三、出示例2

  1、把2/3和10/24化成分母是12而大小不变的分数。

  引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

  学生独立完成。

  四、多层练习巩固深化

  1、巩固练习:

  口答

  1/5=()/159/18=()/6

  2/3=()/1210/24=()/12

  6/10=()/20=3/()=18/()

  2、深化练习:

  下面每组中的两个分数相等吗?为什么?

  3/5和6/101/15和1/5

  3、应用练习:

  判断:

  (1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

  (2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

  (3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

  4、发散练习:你能写出和4/6相等的分数吗?

  在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

  5、游戏:请找找我的好朋友

  五、全课总结

  提问:我们这节课学习了什么内容?分数的基本性质是什么?

  通过今天的学习,你认为学习分数的基本性质有什么作用?