欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学设计

圆的面积教学设计最新5篇

时间:2023-09-03 08:15:55 教学设计

  本文是会员“paobaipaogu”整理的圆的面积教学设计最新5篇,以供借鉴。

圆的面积教学设计

《圆面积》教学设计 篇1

【教学内容】:教材67--68页圆的面积

【教学目标】:

  1、理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力及逻辑推理能力。

  2、利用已有知识,运用数学思想,推导出圆的面积计算公式,渗透转化,极限、以直代曲等数学思想。

  3、培养认真观察,深入思考的良好品质,锻炼自己面对困难,勇于克服,锲而不舍的.精神。

【教学重点】:圆面积的计算

【教学难点】:圆面积公式的推导

【教、学具准备】1.多媒体课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把

【教学过程】

  一、复习旧知,导入新课

  师:同学们,你们想一想,我们学习的平行四边形、三角形、梯形的面积的时候,是利用什么方法推导出了它们的面积公式呢?

  预设引导学生明确:我们是用转化的方法推导出了面积计算公式。

  师:对了,在研究这些平面图形的面积时,我们利用了转化,对应的数学方法解决了问题,那么我们能不能利用这些数学思想求圆的面积呢?

(板书:圆的面积)

【设计意图】:通过复习已学图形面积公式的推导,勾起对已有知识的回忆,为新知打下基础。

  二、尝试转化,汇报发现

  1、师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?

(1)学生通过预习,小组内讨论你发现了什么?

(2)小组派代表发言

(发现:通过转化,可以成为其他图形.并说说你们是怎么做的?)

(学生通过分的份数不同,发现分的份数越多,拼出来的越接近长方形。

【设计意图】:学生通过小组合作讨论,发现问题,激发学生学习兴趣,培养自主学习能力,也为高效课堂奠定基础。

  2、小组合作,尝试推导公式

  现在请同学们思考一个问题:你们把一个圆形转化成了现在的图形之后,它们的面积有没有改变?

(1)请小组内讨论。

  学生发现这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形

(2)尝试推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长。

  请同学们仔细观察(课件继续演示如图,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示)。并且让学生通过计算得出长方形的长就是。

  师:现在我们已经知道了这个长方形的长和宽,它的面积应该是多少?那圆的面积呢?

  小组内讨论发现:长方形的面积=长×宽圆的面积=周长的一半×半径

【设计意图】:通过学生课上分组讨论与交流,调动学生多种感官参与学习,发挥学生的主体作用和互助合作的精神,使他们在交流合作中获得经验。

  三、运用公式,解决问题

  1.教学例

  1.师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

(1)找两个学生到前面版演

  教师加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2.加强练习教师出示课件题目,看谁做得又对又快。

  3.数学小诊所师:课件出示题目,学生抢答

【设计意图】:以做练习的形式,检验学生对这节课的学习效果,有利于了解学生的学习情况,便于教师及时调整教学。四、对本课内容进行回顾,今天你都学到了什么?引导学生回顾今天所学知识点。

人教版圆面积教学设计 篇2

  圆的面积教学设计

  教学目标: 1.知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用 公式解答一些简单的实际问题。

  2.能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。 3.德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。教学重难点:圆面积公式的推导。

  教学关键:弄清圆与转化后的近似图形之间的关系。教具:多媒体计算机。

  学具:每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。教学过程:

  一、复习旧知、设疑导入

  同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!

  微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。

  二、动手操作、探索新知 1.通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。

  初步猜想:圆的面积相当于r2的3倍多一些。

  3个小正方形 由此看出,要求圆的精确面积通过度量是无法得出的。

  2.启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢? 3.学生小组合作。

(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问: ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)②圆和近似的长方形有什么关系?(形状变了,但面积相等)③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底 相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。

(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。

  4.小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

  三、看书质疑、自学例3,注意书写格式和运算顺序

  四、运用新知,解决问题

  1.一个圆的半径是5厘米,它的面积是多少平方厘米? 2.看图计算圆的面积。

  3.街心花坛中花坛的周长是米,花坛的面积是多少平方米? 4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?(1)可测圆的半径,根据S=πr2求出面积。(2)可测圆的直径,根据S=π(d/2)2求出面积。(3)可测圆的周长,根据S=π·(c/2π)2求出面积。

  五、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  六、布置作业

  七、板书设计

  圆的面积

  长方形的面积=长 × 宽 圆 的 面 积 =周长的一半 × 半径

  S=πr×r S=πr2

圆面积教学设计 篇3

  圆的面积教学设计-圆的面积教学设计 "圆的面积"教学设计与评析

”圆的面积”教学设计与评析

  杨秀莉 董延玲 设计

  徐树东 评析

  教学内容:九年义务教育六年制小学数学第十一册第115页至116页。

  教学目的:

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思

  想。

  教学重点:圆面积公式的推导。

  教学关键:弄清圆与转化后的近似图形之间的关系。圆的面积教学设计

  教具:多媒体计算机、幻灯片。

  学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。

  教学过程:

  一、设疑导入

  1.启发学生回忆平行四边形、三角形和梯形面积计算公式的推导过程。(微机演示)

  2.微机显示一个圆,再把圆涂成红色。提问:这是什么图形?看到圆想到什么?圆所围平面部分的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?请同学们思考。

  二、新课教学

  1.通过度量,猜想圆面积的大小。

  用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3

  个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多

  由此看出,要求圆的精确面积通过度量是无法得出的。我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?

  2.学生操作。

(1)学生分别把16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)老师提问:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③把圆16等份和32等份后,拼成的图形有什么区别?(32等份后拼成的图

  形更接近于长方形)

  如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(微机显示)(圆等分的份数越多,拼成的图形越接近于长方形。)

④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)

⑤你能推导出圆面积计算公式吗?

(2)把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一,高等于圆半径的2倍(2r),所以S=πr/2·2r=πr2(见图一)

(3)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底

  相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr2

(见图二)。

(4)把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2(见图三)。

  3.小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。

圆面积教学设计 篇4

  教学内容

  课本第143页例2;练一练第1~6题。

  教材分析

  这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。

  学情分析

  本班学生计算能力还可以,就是对应用题有一种害怕心理。

  教学目标

  1、进一步掌握圆面积公式,并能正确地计算圆面积。

  2、能运用圆面积计算公式,正确地解决一些简单的实际问题。

  教学重点

  会熟练运用公式求圆面积。

  教学难点

  求出需要的条件,即圆的半径。

  教学准备

  作业纸、课件。

  教学过程

  一、复习。

  课件出示:

(一)求下列各题中圆的半径。

(1)C=分米,r=?;(2)d=30厘米,r=?

(3)C=分米,r=?;(4)d=厘米,r=?

(二)、求下列各圆的面积。

(1)r=2分米,S=?(2)d=6米,S=?

(3)r=10厘米,S=?(4)d=3分米,S=?

  只要求学生进行口头表述计算公式(不求计算结果)

  二、学生活动:

  要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。

  运用学生事先准备的工具(细绳、直尺等)

  三、汇报交流

  小组把作业纸上交,交流心得

  姓名

  准备工具

  物体名称周长

  半径

  面积

  四、巩固练习

  练一练第1~6题。

《作业本》p73。

  板书

  圆面积公式的应用

  R=d÷2

  R=c÷π÷2

  S=πr

圆的面积的数学教案 篇5

  第一单元圆的周长和面积

  一.本单元的基础知识

  本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

  二.本单元的教学内容

  P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

  三.本单元的教学目标

  1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

  2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。

  四.本单元重难点和关键

  1.教学重点:求圆的周长与面积。

  2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

  3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

  五.本单元的教学课时

  13课时