欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 六年级教案

小学六年级数学《圆锥的体积》教案(通用6篇) 六年级数学圆锥的体积教学设计

时间:2023-08-29 08:40:13 六年级教案

小学六年级数学《圆锥的体积》教案

小学六年级数学《圆锥的体积》教案 篇1

教学目标

  1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

  2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

  3、培养学生认真审题,仔细计算的习惯。

重点:进一步掌握圆锥的体积计算及应用

难点:圆锥体积公式的灵活运用

教学过程

  一、知识回顾

  1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

  2、学生说,教师板书:

  圆锥圆柱

  特征1个底面2个

  扇形侧面展开长方形

  体积V=1/3SHV=SH

  二、提出本节课练习的内容和目标

  三、课堂练习

(一)、基本训练

  1、填空课本1----2(独立完成后校对)

  2、圆锥的体积计算

  已知:底面积、直径、周长与高求体积(小黑板出示)

(二)、综合训练:

  1、判断

(1)圆锥的体积等于圆柱的1/3

(2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH

(3)一个圆柱形容器盛满汽油有升,这个容器的容积就是升

(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米

  2、应用:练习四第45题任选一题

  3、发展题:独立思考后校对

  四课堂小结:说说本节课的收获

小学六年级数学《圆锥的体积》教案 篇2

一、教材分析

  圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.

二、教学过程

(一)引出课题

1、师:同学们,看一看祝老师手中拿的是什么?

  生:这是一个圆锥体.

2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?

  生:可以,我们可以用排水法来求出它的体积.

  师:如果是一个很大的一个圆锥体还用这种办法,会怎样?

  生:能求出来但会很麻烦.

  师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)

(二)实验探究推导公式

1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?

  生:圆柱体

2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)

  学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.

  师:其他种和他们一样吗?

  生:不一样.

  师:谁还愿意汇报.

  生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.

  生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍

2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?

  生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。

3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。

(三)巩固练习

1、判断

(1)圆柱体的体积是圆锥体体积的3倍。 ( )

(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )

(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )

2、解决问题

(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?

(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?

(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?

三、教学反思

  这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。

  1、难点分散。

  针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。

  2、导入的新颖。

  情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。

  3、教学手段和练习配套。

  教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。

  4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。

小学六年级数学《圆锥的体积》教案 篇3

  教学内容:

  教科书第52页练习十二的第69题。

  教学目的:

  通过练习,使学生进一步熟悉圆锥的体积计算。

  教学过程:

  一、复习

  1.圆锥的体积公式是什么?

  2.填空。

  (1)一个圆锥的体积是与它等底等高的圆柱体积的

  (2)圆柱的体积相当于和它等底等高的圆锥体积的()倍。

  (3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的,相当于圆锥的()倍。

  二、课堂练习

  1.做练习十二的第6题。

  教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:

  让学生分组讨论一下,然后各自让一名学生说说讨论的`结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板

  测量出圆锥的高,这样就可以求出圆锥的体积。

  2.做练习十二的第7题。

  读题后,教师可以先后提问:

  这道题已知什么?求什么?

  要求这堆沙的重量,应该先求什么?怎样求?

  指名学生回答后,让学生做在练习本上,做完后集体订正。

  3.做练习十二的第8题。

  读题后,教师可提出以下问题:

  这道题要求的是什么?

  要求这段钢材重多少千克,应该先求什么?怎样求?

  能直接利用题目中的数值进行计算吗?为什么?

  题目中的单位不统一,应该怎样统一?

  分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。

  4.做练习十二的第9题。

  读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

  要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

  让学生立做在练习本上,做完后集体订正。

  三、选做题

  让学有余力的学生做练习十二的第10*、11*、12*题。

  1.练习十二的第10*题。

  教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

  引导学生利用C=2r可以得到r=。再利用SR,就可以求得S=()。再利用圆锥的体积公式就可以求出其体积。

  2.练习十二的第11*题。

  这是一道有关圆柱、圆锥体积的比例应用题。

  可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

  设圆柱的高为x厘米。

  =

  X=9。6

  (注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)

  3.练习十二的第12题。

  这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

小学六年级数学《圆锥的体积》教案 篇4

【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

【教学重点】

  圆锥体体积计算公式的推导过程.

【教学难点】

  正确理解圆锥体积计算公式.

【教学步骤】

一、铺垫孕伏

  1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

(二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

(1)已知圆锥的底面半径和高,求体积.

(2)已知圆锥的底面直径和高,求体积.

(3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、随堂练习

  1、求下面各圆锥的体积.

(1)底面面积是平方米,高是米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

小学六年级数学《圆锥的体积》教案 篇5

  教学目标

  1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

  2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

  3、培养学生认真审题,仔细计算的习惯。

  重点:进一步掌握圆锥的体积计算及应用

  难点:圆锥体积公式的灵活运用

  教学过程

  一、知识回顾

  1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

  2、学生说,教师板书:

  圆锥圆柱

  特征1个底面2个

  扇形侧面展开长方形

  体积V=1/3SHV=SH

  二、提出本节课练习的内容和目标

  三、课堂练习

  (一)、基本训练

  1、填空课本1----2(独立完成后校对)

  2、圆锥的体积计算

  已知:底面积、直径、周长与高求体积(小黑板出示)

  (二)、综合训练:

  1、判断

  (1)圆锥的体积等于圆柱的1/3

  (2)长方体、正方体、圆柱和圆锥的体积公式都可用V=SH

  (3)一个圆柱形容器盛满汽油有升,这个容器的容积就是升

  (4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米

  2、应用:练习四第45题任选一题

  3、发展题:独立思考后校对

  四课堂小结:说说本节课的收获

小学六年级数学《圆锥的体积》教案 篇6

  教学内容:教材第16~19页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

  教学重点:掌握圆锥的特征。

  教学难点:理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1.说出圆柱的体积计算公式。

  2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积=底面积高

  用字母表示:V=Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、巩固练习

  1.做练习三第2题。

  学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

  2.做练习三第4题。学生书面练习,小组交流,集体订正。

  四、课堂小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  五、课堂作业

  练习三第3题及数训。

  六、板书:

  圆锥

  圆锥的特征:底面是圆,

  侧面是一个曲面,展开是一个扇形。

  它有一个顶点和一条高。

  圆柱的体积=底面积高

  圆锥的体积=圆柱体积

  圆锥的体积=底面积高V=Sh