欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 五年级教案

北师大小学数学五年级上册教案5篇 北师大版五年级数学确定位置教案

时间:2024-03-14 14:39:12 五年级教案

  下面是范文网小编整理的北师大小学数学五年级上册教案5篇 北师大版五年级数学确定位置教案,以供参考。

北师大小学数学五年级上册教案5篇 北师大版五年级数学确定位置教案

北师大小学数学五年级上册教案1

  1、通过“打电话”的情境,体会生活中存在着需要用除数是小数除法去解决的问题,进一步体会数学与生活密切联系。

  2、利用已有知识,经历探索除数是小数的小数除法的计算方法的过程,体会转化的数学思想。

  3、正确掌握除数是小数的小数除法案的计算方法,并能解决有关的实际问题。

  正确掌握除数是小数的小数除法案的计算方法能解决有关的实际问题。

  教学方法及学生活动设计

  个性调整

  教学重点教学难点教学环节

  问提问生活中有哪个同学一、创设情创设“打电话”的情境,

  有打长途电话的经验。境

  1、出示文主题图,让学生说一说图的'意思,并讨论如何解决“谁打电话的时间长”的问题。

  二、自主探2、组织学生探索如何计算4.83÷0.7和45÷7.2的究,创建数得数时,在探索之前,先引导学生比较这两个算式

  和前面学习的小数除法有什么不同,使学生体会到学模型

  如果除数变成整数就好了,引导学生把新的知识转

  化为已有的知识。不同的学生会有不同的想法,但都是要把被除数和除数扩大相同的倍数,使除数变

  成整数,再按照小数除以整书的方法进行计算。1、试一试:其中37。1÷0。53和8。4÷0。56被除

  三、巩固数和除数同时扩大100倍后,被除数末尾需要补0,与应用2。7÷7。5被除数和除数同时扩大10倍后,被除数

  比除数小,商的整数部分需要补0,在练习后反馈时要引起学生的注意。

  2、练一练/1,2,3——补充练习:

  1、把下面各题变成除数是整数的除法:4.68÷1.2=□÷122.38÷0.34=

  □÷□5.2÷0.325=□÷325161÷0.46=□÷□2.笔算。6.84÷0.91225.84÷1.799.6÷41.5

  220.5÷147

  3

  4

  一、创设情境二、自主探究,创建数学模型三、巩固与应用

  呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。

  首先引导学生进行解答。由于货币的最小单位一般是“分”,以“元”为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。

  1、试一试,可以让学生用计算器算出得数,然后根据得数按要求用四舍五入法求出近似值。2、练一练:P71/1,2,3,4

  第1题:这是人民币和港币的兑换,12.5÷1。07,

  四、总结。超过了11元港币;也可以用兵1×1.07,不到本世

  纪末2元,因此11元港币不够。

  第2题:这是人民币和日元的兑换,要注意的是:5000×7.09所得到的近似值还需要去乘100.第3题:这是欧元换人民币,5000×9.15=45750元不需要近似值.

  根据学生的练习情况进行小结.

北师大小学数学五年级上册教案2

  单元导学

  本单元的主要内容有:比较图形的面积;认识平行四边形、三角形与梯形的底和高;平行四边形、三角形和梯形的面积计算方法;解决有关面积计算的实际问题。

  多边形的面积是《数学课程标准》图形与几何领域中的重要内容,也是本册教材的重点和难点知识,是小学生应该掌握的一项基本技能。

  学生在以前的学习过程中已经初步认识了长方形、正方形、三角形、平行四边形和梯形,学习了面积与面积单位及长方形、正方形的面积等有关知识,初步感受了解决有关图形面积计算问题的思维方式,即用面积单位去度量一个图形的面积。本单元在此基础上展开图形面积计算公式的探索,解决有关图形面积与组成图形要素之间的数量关系的问题。

  备内容

  比较图形的面积(1课时)→比较图形面积大小的基本方法;体验图形形状的变化与面积大小变化的关系

  认识底和高(1课时)→认识平行四边形、三角形、梯形的底和高;会用三角尺画平行四边形、三角形与梯形的高;能画出指定底和高的平行四边形、三角形与梯形

  多边形的面积

  探索活动:平行四边形的面积(2课时)→探索平行四边形面积的计算公式;运用平行四边形面积的计算公式解决实际问题

  探索活动:三角形的面积(2课时)→探索三角形面积的计算公式;运用三角形面积的计算公式解决实际问题

  探索活动:梯形的面积(1课时)→探索梯形面积的计算公式;运用梯形面积的计算公式解决实际问题

  备目标

  知识与技能

  1.借助方格纸直接判断图形面积的大小,初步体验数方格及割补法在图形面积探索中的.应用。

  2.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

  3.掌握平行四边形、三角形、梯形面积的计算公式。

  过程与方法

  1.通过动手操作、实验观察等活动,体验图形形状变化与面积大小变化关系,发展空间观念。

  2.经历利用割补、转化等方法探索图形面积计算公式的过程,理解并掌握平行四边形、三角形和梯形的面积计算公式,体验转化的数学思想。

  情感、态度与价值观

  1.在数学活动中,培养学生的创新意识。

  2.在具体的操作探究活动中体验学习数学的乐趣。

  3.在探索图形面积的计算公式的过程中,获得成功探索问题的体验。

  备重难点

  重点

  1.认识平行四边形、三角形、梯形的底和高,会用三角尺画平行四边形、三角形与梯形的高。

  2.掌握平行四边形、三角形、梯形面积的计算公式。

  难点

  1.能画出平行四边形、三角形、梯形的高。

  2.运用平行四边形、三角形和梯形的面积计算公式解决实际问题。

北师大小学数学五年级上册教案3

  教学内容:

  课本第12~17页上的内容。

  教学目标:

  1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数= 奇数。

  2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。

  3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。

  4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。

  教学重点:

  从生活中的.摆渡问题,发现数的奇偶性规律。

  教学难点:

  运用数的奇偶性规律解决生活中的实际问题。

  教具准备:

  投影、杯子。

  教学过程:

  一、揭示课题

  自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。

  二、组织活动,探索新知

  活动一:示图(右图)

  小船最在南岸,从南岸驶向北岸,

  再从北岸驶回南岸,不断往返。

  1、

  (1)小船摆渡11次后,船在南岸还是北岸?为什么?

  (2)有人说摆渡100次后,小船在北岸。

  他的说法对吗?为什么?

  2、请任说一个摆渡的次数,学生回答在南岸还是北岸?

  3、请学生画示意图和列表并观察。

  4、想:摆渡的次数与船所在的位置有什么关系?

  摆渡奇数次后,船在 岸。

  摆渡偶数次后,船在 岸。

  试一试

  一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝 ,反动19次后杯口朝 。

  1、想一想:翻动的次数与杯口的朝向有什么关系?

  翻动奇数次后,杯口朝 。

  翻动偶数次后,杯口朝 。

  2、把杯子换成硬币你能提出类似的问题吗?

  活动二

  圆中的数有什么特点?正方形中的数有什么特点?

  圆中的数都是偶数,正方形中的数都是奇数

  试一试:(投影)

  三、巩固练习(投影出示习题)

  四、总结

  这节课同学们有什么收获和体会?

  五、作业

  1、课本第17页试一试的题目。

  2、优化作业

北师大小学数学五年级上册教案4

  教学内容:

  课本第11页上的内容。

  教学目标:

  1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

  2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的'方法。

  3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

  教学重点:

  在教学活动中,帮助学生理解质数和合数的意义。

  教学难点:

  培养孩子的观察,通过探索找出寻找质数的简单的方法。

  教具准备:

  投影仪、小正方形纸片等。

  教学过程:

  一、 揭示课题

  1、 先复习自然数按能不能被2整除的分类。

  2、 教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。

  板书课题:找质数。

  二、组织活动,探索新知。

  活动:拼一拼

  1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

  (同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)

  2、学生 汇报,教师填表(投影出示下表)

  小正方形个数(n) 拼成的长方形种数 n的因数

  (1)让学生观察左表中各数的因数,看看有什么发现?

  (2)结合上面的发现,将212各数分为两类,说一说这两类数分别有什么特点。

  3、教师提示质数和合数的意义。

  一个数只有1和它本身两个因数,这个数叫做质数;

  一个数除了1和它本身以外还有别的因数,这个数叫做合数。

  4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)

  三、巩固练习(做一做)

  1、在1 4 7 10 11 15 17 18 21这些数中,哪些是质数?哪些是合数?

  2、完成课件练一练1、2题

  四、总结。

  通过今天这节课的学习,你有什么收获?你还有什么要问的?

  五、作业。

  优化作业

北师大小学数学五年级上册教案5

  教学内容:

  北师大版小学数学五年级上册。(教科书第82、83页。)

  课标分析:

  本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。

  教材分析:

  本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。

  学生分析:

  1、学生的知识基础

  五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。

  2、学生的能力基础

  学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。

  教学目标:

  1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。

  2、培养学生推理、观察、归纳和概括能力。

  3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。

  教学重点:

  探究发现点阵中的规律。

  教学难点:

  总结概括规律。

  教学准备:

  课件,五子棋,磁扣等。

  教法学法:

  1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入

  2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思

  教学过程:

  一、展示图片,引出课题

  1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。

  师:这些图片有什么特点?

  生:好像都是由点组成的。

  师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。

  早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。

  二、细心观察,探求规律

  1、出示正方形点阵,探索正方形点阵的规律。

  A、第一个规律。

  师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)

  (1)每个点阵可以看成什么图形?

  (2)每个点阵中分别有多少个点?你是怎样观察出来的?

  小组讨论,指名回答。

  师:每个点阵可以看成什么图形?(正方形),同意吗?

  生1:我认为第一个点阵不能看成一个正方形,是一个圆形。

  师:其他同学也同意他的观点吗?

  师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?

  师:每个点阵中分别有多少个点?

  生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。

  师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?

  生:我是通过数出每个点阵中点的个数得到的。

  师:谁还有不同的方法?有没有更快一些的方法?

  生:我是通过计算得到的。

  师:能具体说一说是怎样通过计算得到的吗?

  生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。

  师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的`序号,那么正方形点阵点的个数是多少呢?

  生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)

  师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)

  师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?

  (这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)

  B、第2个规律

  师:刚才我们是怎样观察的?(横着数和竖着数)

  正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?

  “斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)

  观察并思考

  (1)分别用算式表示每个点阵点的个数。

  (2)你发现了什么规律?

  学生汇报,教师板书

  第1个:1=1

  第2个:1+2+1=4

  第3个:1+2+3+2+1=9

  第4个:1+2+3+4+3+2+1=16

  第N个:1+2+3+N++3+2+1

  师:“谁发现什么规律呢?”

  生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。

  师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。

  刚才是横竖数,“第几个点阵就是几乘几”。

  C、第3个规律

  师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?

  师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。

  小组代表汇报。

  生:(总结)每用折线画一次后,点阵中的个数是

  1=1 1+3=4 1+3+5=9 1+3+5+7=16

  师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,

  师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”

  教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”

  通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。

  师:真了不起。这种划分方法,我们可以叫做“折线划分法”。

  第几个点阵,就是从1开始加几个连续奇数。

  通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。

  (在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)

  刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?

  (在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)

  三、牛刀小试

  1. (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?

  生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。

  小组交流,研究:上面的点阵还有其他的规律吗?

  生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。

  生;1,1+2,1+2+3,1+2+3+4

  师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)

  上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)

  四、兴趣优在:(课件出示教材第83页练一练)

  第2题:按规律画出下一个图形。

  师:这道题就象梅花桩,指第一个,走了几个梅花桩?

  生:3个。

  师:指第二个,共走了几个梅花,增加几个桩?

  生:7个,增加了4个。

  师:指第三个,共走了几个梅花桩,又增加了几个桩?

  生:13个,又增加了6个。

  师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。

  生:交流,探索总结规律

  (这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)

  五、知识拓展

  欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。

  师:点阵不只是点,很多有规律的排列,都可以看成点阵。

  投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。

  六、课堂小结

  师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?

  七、课后操作

  自创新的点阵图,并说出点阵规律。