【导语】本文是热心网友“duanxinbotunping”分享的比的意义教案8篇,供大家赏析。
比的意义教学设计 篇1
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
数学比的意义教案 篇2
学习内容:
教材104页例1、例2及做一做。
学习目标:
1、 我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。
2、 我能正确计算同分母分数加、减法。
3、 我会用所学知识解决实际问题。
学习重点:
理解同分母分数加、减法的算理。
学习难点:
学会同分母分数加、减法的计算方法。
学习准备:
圆纸片
学习过程:
一、检查课前学习,导入新课
二、自主学习,合作探究
1、自学教材104页例1
(1)我得到的数学信息
(2)求爸爸妈妈一共吃了多少张饼?我写的算式
(3)我是这样想的,得出结果
(4)通过解答,我发现
分数加法的含义与整数加法的含义( )
计算同分母分数加法时,分母( ),分子( )。
2、小组合作学习例2
仔细观察,根据问题,写出算式。
我是这样想的,得出结果:
从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。
3.小组展示,汇报。
4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。
5.我能行
完成105页做一做第一题。
数学比的意义教案 篇3
教学目标
1.了解小数是如何产生的,理解和掌握小数的意义。
2.明确小数与分数之间的联系,掌握小数的计数单位以及它们之间进率。
3.经历小数的发现、认识过程,感知知识与生活之间的密切联系,体验探究发现和迁移推理的学习方法,培养动手实践、合作探究的学习习惯。
教学重难点
重点:理解和掌握小数的意义、小数的计数单位以及它们之间的进率。
难点:理解小数的计数单位以及它们之间的进率。
教学工具
课件
教学过程
一、复习导入
师出示课件(m,dm,cm)并问到:首先来见见几位老朋友,你还认识它们吗?谁来读一读?
指一名学生试读
师:一起读
生齐读。
师:想一想,括号里应填几?
指名回答。
出示课本情境图
师:他们测量的结果分别是多少?
生:1米1分米、1米2分米
师:如果只用米作单位,该怎样表示呢?
生:米、米(师板书)
师:生活中,在哪些地方可以见到小数?来看几幅图片。(课件出示生活中的小数)
师:我们把小数点后面有一个数的小数叫做一位小数,找一找还有一位小数吗?
小数点后面有两个数的叫做两位小数,能找一找吗?
谁能说一个三位小数?
师:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。这节课我们继续认识小数。(板书课题:小数的意义)
二、探究新知
1、探究一位小数的意义
师出示课件:把一米平均分成十份,这里的一份是多少?
生:一分米
师:用分数表示是多少米呢?生:十分之一米
师:用小数表示是多少米呢?
生:米
师:把一米平均分成10份,1份是1分米,用分数表示是十分之一米,小数是米。这里还有两个括号需要填写,大家独立完成,可以吗?
生完成,师指名回答,并让生说一说是怎么想的,集体评价。
师:观察这些分数和小数,你有什么想说的吗?
生如果有困难,师引导:观察这些分数的分母是几?小数是几位小数?
得出结论:分母是10的分数可以用一位小数表示。(师板书)
师:理解了吗?考考你,完成作业纸巩固练习1
生完成,指名回答,集体订正。
2、探究两位小数的意义
师:刚才我们把一米平均分成10份,如果平均分成100份,会是什么样子呢?来看一下。(课件出示)
师:其中的一份是多少呢?
生:1厘米
师:用分数表示是多少米呢?
生:一百分之一米
师:用小数表示呢?
生:米
师:真聪明,那么后面的括号继续交给你独立完成。
生完成,师指名说,集体评价。
师:再来观察一下这些分数和小数,又有什么发现呢?
生交流,得出:分母是100的分数可以用两位小数表示。(师板书)
师:学会了吗?还得考考你。请大家完成作业纸上巩固练习2
生独立完成,指名回答,集体订正。
3、探究三位小数的意义
师:把一米平均分成1000份是什么样子呢?又会有怎样的发现呢?
现在把这个任务交给你和同桌,交流讨论,完成第三个探究。
生生合作交流,师巡视。
生完成,汇报结果,集体订正。
师:观察这里的分数与小数,能得到一个结论吗?
生:分母是1000的分数可以用三位小数表示。(师板书)
4、推想、概括小数的意义
师:试想一下:把一米平均分成一万份,其中的一份用分数怎样表示?小数呢?如果平均分成十万份呢?
师:能不能把我们刚才的这些发现概括成一句简洁明了的话呢?
生交流,师引导说出:分母是10、100、1000......的分数可以用小数表示。(师板书)
师:现在把我们所学的知识应用起来,请大家完成作业纸《应用感受,巩固意义》
生完成,指名回答,订正。
5、认识小数的计数单位与进率
师出示课件:思考一下,里有几个?
生:里有3个
师:里有几个呢?里有几个呢?
生依次回答.
师:、、写成分数分别是多少呢?
生:十分之一、百分之一、千分之一
师:小数的计数单位就是十分之一、百分之一、千分之一......,分别写作、、......
师:再思考:十分之一里有几个百分之一?百分之一里有几个千分之一?
生回答。
师:所以小数相邻两个计数单位的进率是?
生:是10
三、综合应用、拓展提升
生独立完成作业纸上的《综合应用》
第一题:指名回答,集体订正
第二题:指名回答,并说一说是怎样想的。
四、拓展视野
课件出示教材“你知道吗?”指名读一读。
五、课堂小结
这节课你有什么收获呢?
比的意义教学设计 篇4
教学内容:
教材第73到74页分数的意义,“练一练”,练习十三1到4题。
教学目标:
1、了解分数的产生,理解分数的意义,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。
2、培养学生抽象概括能力。
3、感受“知识来源于实践,又服务于实践”的观点。
教学重点:
理解分数的意义。
教学难点:
单位“1”的感知。
教学准备:
多媒体,实物投影仪
教学内容和过程:
一、创设情境
1、同学们,这是几?(板书“1”)
这里有1位老师,1位同学,1还可以表示什么吗?
我相信你们学了今天这节课以后,对1将会有一个更深刻地认识。
2、揭示课题
我们在四年级的时候学过分数,今天我们要继续来学习“分数的意义”。[板书]
[从学生身边熟悉的1引导学生对1的认识,使学生对所学知识有一个整体的感知,并对学习新的知识产生亲切感]
二、新授
1、这里有三幅图,我们一起来看一下。
出示书P73的三副图。(引导学生说出把……平均分成……,每份是它的……。)
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )
(2)出示长方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的5份呢?
(3)出示线段图提问:把1米平均分成10份,这样的1份是几分之几米?9份呢?
三、探索研究
1、现在请同学把目光集中到课桌上,看看老师给你们准备了什么啊?
一张白纸,一根1米长的绳子。
2、你们带了写什么材料呢?
(一堆物体)
3、这些材料能不能通过平均分,得到一些分数呢?
4、学生小组交流,分一分并汇报。
[从生活中挑选了一些实物,作为寻找分数的材料,首先引导学生观察这些材料并猜想能不能用平均分的方法得到分数,然后动手操作寻找分数。展示时重点展示平均分多个物体得到分数的操作过程,让学生感受可以把许多物体看作一个整体,把这个整体平均分成不同的份数,其中的一份或几份也可以用分数表示的过程。为抽象分数的意义做好铺垫,感悟分数就在生活之中。]
5、小结:
以前我们都是把一个物体,一个计量单位平均分,得到了一些分数,刚才你们在分的时候,还可以把许多个物体看成一个整体平均分得到分数。象这样一个物体,一个计量单位和多个物体组成的一个整体,都可以用自然数“1”表示,通常我们把它叫做单位“1”。(板书:单位“1”)
6、 讲授例题(多媒体出示)
出示5个桃子提问:这是什么?
把5个桃子看作(一个整体),平均分成5份,每份有几个桃子?占这个整体的几分之几?
2个桃子呢?
7、出示8片枫叶问:把8片枫叶看作一个整体,平均分成4份,每份几个泥人?占这个整体的几分之几?
6片枫叶呢?
8、结合前面分得的分数,揭示分数的意义。(板书)
9、复习分数各部分的名称及表示的含义。(小组讨论)
9、看书P74的概念。
10、做书上练一练。请两位学生回答。
11、总结,评价。
[学生通过自己动手找分数,在已经建立直观认识的基础上,归纳分数的意义,不强调死记硬背,让学生能用自己的语言归纳,接着引导学生看书进一步理解分数的意义。]
三、课堂实践
现在我们一起来闯三关。(网络教学)
1、第一关,用分数表示下面各图中的涂色部分。
2、第二关,用下面的分数表示图中的涂色部分,对不对?
3、第三关,根据给出的分数在下面各图中画出阴影部分。
4、勇闯三关后,我们一起来进行自我检测。
请同学和你的同桌之间说一说这个分数在句子里所表达的意思,需要帮助的同学可以寻求电脑的帮助。
5、下面我们要来继续冲关,请你来看一看,哪些话中存在错误呢?
6、同学们做得都不错,下面我们一起来玩一个游戏。请你们拿出10粒棋子。
请你摆出它的1/2,是多少粒?12粒棋子的1/2,是多少粒?为什么同样是1/2,而你们有不同的答案呢?(单位“1”不同)
请你们表示出12粒棋子的1/2,1/3,1/4,1/6,是多少粒棋子?为什么单位“1”相同了,而你们的结果不同呢?(平均分的份数不同)
[让学生体会分数的意义,学生与学生,教师与学生之间互动交流,体现学生主体,教师主导的地位。]
四、课堂小结
今天这节课我们学习了分数的意义,下一节课我们继续来深入研究。
五、课堂作业
练习十三第4题。
六、回家作业
练习册
七、板书设计
分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。
数学比的意义教案 篇5
单元教学要求:
1、 经历在熟悉的生活环境中认识负数的过程,了解负数的意义,会用负数表示一些日常生活中的问题。
2、 能对现实生活中有关负数的数学信息作出合理解释。
3、 能用负数描述并解决一些现实世界中的简单问题。
单元教学重点:
负数的意义
单元教学难点:
用数轴表示正负数
单元课时安排:
1、 负数的初步认识及读写 1课时
2、 用数轴表示正负数 1课时
第一课时 负数的认识
一、教学目标
(一)知识与技能
让学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0既不是正数也不是负数。
(二)过程与方法
结合现实情境理解负数的具体含义,学会用正数、负数表示生活中相反意义的量。
(三)情感态度和价值观
让学生了解负数产生的历史,感受正数、负数与生活的联系,结合史料进行爱国主义教育。
二、教学重难点
教学重点:结合现实情境理解负数的不同含义。
教学难点:结合现实情境理解负数的不同含义。
三、教学准备
课件。
四、教学过程
(一)谈话激趣,导入新课
1、同学们,你们在生活中见过负数吗?你知道它的含义吗?
2、究竟什么是负数?它表示的含义有什么不同呢?今天我们这节课一起认识负数(揭示课题)。
(二)结合情境,理解意义
1、初步感知负数
(1)课件出示教材第2页例1。
下面是中央气象台20xx年1月21日下午发布的六个城市的气温预报(20xx年1月21日20时—20xx年1月22日20时)。
教师:请仔细观察,说说你有什么发现?
预设:①哈尔滨的最高气温是零下19℃,最低气温是零下27℃;海口最热,最高气温是23℃……②-12℃表示零下十二摄氏度(读作负十二摄氏度);零下温度在数字前加“-”……
(2)-3℃和3℃表示的意思一样吗?请在温度计中表示出来。
预设:①-3℃表示零下三度,3℃表示零上三度;②它们表示的意义相反;③先找0℃,往下数三格表示-3℃,往上数三格表示3℃。
(3)0℃表示什么意思?
预设:①0℃表示天气很冷;②0℃表示淡水开始结冰的温度;③0℃是零上温度和零下温度的分界线。
小结:比0℃低的温度叫零下温度,通常在数字前加“-”(负号)。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下正号可省略不写。
(4)请在温度计上表示-18℃,比一比-3℃和-18℃哪个温度低?
2、认识正负数
(1)课件出示教材第3页例2。
教师:研究完气温,再来看看存折上的数。你们又有什么发现呢?说说这些数各表示什么? 预设:①表示存入20xx元;②和-的意义恰好相反,一个是存入500元,一个是支出500元。
(2)教师:像零上温度与零下温度、收入与支出这样表示两种相反意义的量,生活中还有许多。你能举出这样的实例吗?
预设:水面上升
2米、下降2米;乘车时上客5人、下客6人;货物运进200吨、运出150吨……
(3)我们怎样来表示像这样两种相反意义的量呢?
教师:为了表示两种相反意义的量,需要用两种数。一种是我们以前学过的数,如3、500、、,这些数是正数;另一种是在这些数的前面添上负号“-”的数,如-3、-500、-、-等,这些数是负数。那么0是什么数呢?(0既不是正数,也不是负数,它是正数与负数的分界线。)
(4)基本练习(课件出示教材第4页“做一做”第2题)
请学生独立思考,哪些是正数,哪些是负数,并填入相应的圈中。
(三)回归生活,拓展应用
教师:在日常生活中,人们还有好多时候要用到正数、负数,让我们一起接着看一看!
1、课件出示教材第6页练习一第1题。
(1)学生独立完成,集体反馈。
(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?
2. 课件出示教材第6页练习一第5题。
(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。)
(2)独立完成,集体反馈。
(3)你知道你所在城市的海拔高度吗?说说它的具体含义。
3、课件出示教材第6页练习一第2题。
(1)仔细读题,说说你知道了什么信息?
(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?
(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗?
(4)你还知道此时其他时区的时间吗?试着表示出来。
4、课件出示练习题。
某食品厂生产的120克袋装方便面外包装印有“(120±5)克”的字样。小明购买一袋这样的方便面,称一下发现117克,请问厂家有没有欺骗行为?为什么?
(1)说说你知道了什么信息?
(2)“120±5”表示什么意思?
(3)如果120克记作0克,117克可以记作多少克?
(四)了解历史,课堂总结
1、课件出示教材第4页“你知道吗?”内容。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下。
(1)看了介绍,你对负数又有什么新的认识?
(2)你有什么感受?
2、这节课你有什么收获?
教师:关于负数,生活中还有更多的知识等待我们去探索,只要同学们做善于观察的有心人,在今后的生活和学习中会有更多的.收获。
第二课时 直线上的负数
一、教学目标
(一)知识与技能 经历在直线上表示行走距离和方向的过程,
体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。
(二)过程与方法 在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题,渗透数形结合的思想。
(三)情感态度和价值观 引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。
二、教学重难点
教学重点:学会在直线上表示正负数,体会直线上正负数的排列规律。
教学难点:用正负数表示相反意义的量解决实际问题。
三、教学准备
课件。
四、教学过程
(一)复习旧知,引入新课 填一填。
①一辆公共汽车经过某站台时有12人上车,记作( )人;7人下车,记作( )人。 ②阳光小学今年招收新生300人,记作+300人,那么-420人表示()。 ③升降机上升米,记作+米;-4米表示()。
(1)独立完成,集体反馈。
(2)像这样表示两种相反意义的量可以用正负数表示,你还能举出这样的例子吗?
(二)创新情境,探究新知
1、认识直线上的负数
(1)出示教材第5页例3。
(2)如何在直线上表示他们的行走的距离和方向呢?你准备怎么画?
预设:①以大树为起点,向东为正,向西为负;②0表示起点,向东走2米,表示为+2米,向西走2米,表示为-2米。
(3)独立画图,交流反馈。
①你是怎么画的?
②比较大家的画法有什么不同?(单位长度不一样。)
③直线上其他几个点代表什么数?
④课件演示画法,教师小结:在一条直线上表示行走的距离和方向,需要先确定起点、正方向、单位长度,再用正负数表示相应点。这就是我们今天这节课研究的内容(板书课题:直线上的负数)。
《比的意义》教案 篇6
教学目的
1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数
2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。
3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。
教学重点:
理解整数、约数和倍数的概念。
教学难点:
整数、约数和倍数的联系。
教学过程:
一、复习
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=÷3=524÷2=12
教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=这样的除法,一般说6能被5除尽。
被除数和除数
商
整除
都是整数,除数不等于0
商是整数,而且没有余数
除尽
不一定是整数,除数不等于0
商是有限小数,没有余数
二、新课
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的。”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
15是3的什么数?
3是15的什么数?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别
1、基本练习P51做一做
三、巩固练习
1、独立完成练习十一的1、2、3题。
2、第四题
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
《比的意义》教案设计 篇7
教学目标
1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。
2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。
教学重点
理解比的意义,比和分数、除法之间的联系。
教学过程
一、 创设问题情境,引入比
电脑出示三幅长方形的画(标出每一幅的长和宽)。
谈话:这里有三幅不同形状的。画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)
提问:还可以怎样表示它们的关系?
过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。
二、 自主活动,认识比
1. 用比表示两个同类量的相除关系。
(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?
学生分别用比表示另外两幅画的长和宽的关系。
(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。
谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。
指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)
再问:那么水和洗洁液的比是几比几?表示什么意思?
师生共同讨论1 ∶ 8和1 ∶ 1的含义。
2. 用比表示两个不同类量的相除关系。
谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。
提问:根据图中的信息,你知道梨的单价是多少元吗?
根据学生回答,板书:单价=总价÷数量。
讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。
提问:你能用比来表示苹果的总价和数量之间的关系吗?
这里的6 ∶ 3表示什么意思?(表示总价除以数量)
3. 理解比的意义。
谈话:根据上面的例子,你能说一说什么叫两个数的比吗?
小结:两个数相除又叫做两个数的比。
4. 自学课本。
提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?
反馈:通过自学,你又了解了哪些知识?
师生共同讨论下面的问题:
(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?
(2)什么叫比值?怎样求比的比值?
(3)比和除法、分数有什么联系?
(4)比还可以写成怎样的形式?
小结:(略)
三、 巩固练习,深化理解
1. 完成“练一练”第1、2题。
学生完成填空后,让学生说一说每个比所表示的意思。
2. 完成“练一练”第3题。
学生改写后,再读一读,并分别指出每一个比的前项和后项。
3. 小强和爸爸身高的比。
出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。
学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。
4. 糖水的甜度。
出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。
提问:你知道哪杯水甜吗?为什么?
出示:第三杯中糖4克,水100克。
谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。
提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?
四、 课堂总结
提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?
五、 课外延伸
出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?
课件播放短片,介绍黄金比。
谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。
比的意义教学设计 篇8
教学要求
1、使学生理解比的意义,认识比的各部分名称。会正确读写比。
2、能正确的求比值,掌握比、除法和分数的关系。
3、培养学生的比较、分析和抽象概括能力。
4、加强知识间的联系,使所学的知识系统化,渗透知识间相互联系的观点。
教学重点:理解比的意义
教学难点:理解比与分数、除法的关系。
教材分析:
这部分是学生学过分数与除法的关系,分数乘除法的意义,分数乘除法应用题的基础上教学的。由于分数与除法有着密切的联系,把比的知识放在分数除法的后面进行教学,加强了知识间的内在联系,又为学习其他知识以及比例的知识打好基础。
学情分析:
因为比的现象在生活中司空见惯,例如按一定的比稀释清洁剂,加工混凝土等等都用到比的知识。学生有生活的一些体验,因而可以从学生的兴趣出发展通过观察、比较、讨论,感受比的含义和特征。进而了解比与除法、分数的关系。
教学过程:
活动一
1、情境引入:出示一面国旗联合国旗的图案,我国第一艘载人飞船"神州"五号顺利升空。这是扬利伟在飞船上向人们展示的一面中华人民共和国和联合国国旗的图案,这个图案长是15厘米,宽是10厘米,根据这两个条件可以提出什么问题?(可提的问题很多,教师有选择地板书。①长是宽的几倍?②宽是长的几分之几?)
2、揭示课题:长是宽的几倍或者宽是长的几分之几是我们用以前学过的除法对这面旗的长和宽进行比较的,今天我们再学习一种对两个数量进行比较的新的方法。这就是比(板书课题)
活动二:
1、教学比的意义。
有时我们也把这两个数量之间的关系说成:长和宽的比是15比10,宽与长的比是10比15。
2、进一步理解比的意义。
"神舟"五号进入运行轨道后,在距地350千米的高空做圆周运动,平均90分钟绕地球一周,大约运行千米。
你能提出什么问题?
你能用比表示路程和时间的关系吗?
3、小组讨论,你是怎么理解比的意义?
得出:两个数相除又叫两个数的比。
4、比的写法和各部分名称及求比值的方法
介绍比号、比表示的方法、比的各部分名称,
①中间的":"叫做比号,读的时候直接读比。
②比的各部分名称是什么呢?请大家看书p44的内容。
③介绍比各部分的名称,求比值方法,并板书。
5、比、除法、分数之间的关系
比、除法、分数有什么联系和区别?
联系:a:b=a÷b=
区别:比表示两个数关系的式子,分数是一个数,除法是一种运算。
那比的后项能不能为零呢?既然比的后项不能是0,而足球赛中常出现的"2:0"的意义是什么?它是一个比吗?
足球赛中记录的"2:0"的意义只表示某一队与另一队比赛各得的进球分数,不需表示两队所得分数的倍比关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。
比的另一种表示方法,就是写成分数形式。
(4)质疑:对本节课的内容你又不清楚的地方吗?活动三1、填空:
(1)完成一项工程,甲8天完成,乙12天完成,甲乙两人工作时间的比是():()。
(2)如果a:b=c,那么a是比的(),b是比的(),c是比的()。
(3)求比值:72:24,0、8:3、2,1、5小时:20分钟。
2、完成44页做一做内容。
3、根据下面的信息,你能想到那些问题?
六年一班有男生24人,女生26人。
张师傅5天加工300个零件。2枝钢笔11元。
课题:比的基本性质
教学目标:
使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
培养学生的抽象概括能力。
3、渗透转化的数学思想。
教学重点:理解比的基本性质,掌握化简比的方法。
教学难点:掌握化简比的方法。
教材分析:比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过"想一想"启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。
学情分析:学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。
教学过程活动一1、出示例1,出示例1,让学生解答。
教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)
①根据分数、比、除法的关系验证。
②根据比值验证。……③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。
④总结比的基本性质,为什么强调0除外呢?活动二教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)
根据你自己的理解,能说一说什么是最简单的整数比吗?
(前项和后项是互质数。)
请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。
让学生试做后,总结方法。
出示例1(2)①1/6:2/9②0。75:2
学生先讨论方法,再试做。
小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。
化简比与求比值有什么不同?质疑 活动三
1、做一做46页化简比。
2、48页第4题
课题:比的应用
教学目标
1、让学生了解比在生活中的广泛应用,探索按比例分配的解决方法,并能用来解决有关实际问题。
2、培养学生自主探索解决问题的能力,培养学生的创造性思维和实践能力。
3、树立用自己学来的知识帮忙解决问题的意识。
教学重点掌握按比例分配的解决方法。
教学难点灵活解决实际问题。
教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习"比例""比例尺"奠定了基础。
学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。
教学过程活动一1、课前调查
奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?
牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。
2、实际操作
要配置220毫升奶茶,需要多少牛奶和多少红茶?
学生讨论,研究不同算法。
解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml
解法二:2+9=*(9/11)=180ml220*(2/11)=40ml
讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。
学生配置奶茶,共同品尝。活动二1、教学例2
书上例2,列式计算
2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。
活动三:
1、请帮忙配糖:
一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)
3、帮刘爷爷收电费
刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83、2元,按每家分电表的度数分摊电费,每家各应收多少钱?
住户王家张家赵家李家
分电表度数40 38 29 53
3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?
4、总结全课
比的应用广泛,在工业、农业、医药……用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。