【简介】在数学教学中,数轴教案是一项重要的教学工具,它帮助学生更好地理解数学概念和解决问题。下面是会员“iihqg947”收集的数学数轴教案(共11篇),供大家参阅。
小学数学数轴教案 篇1
【教学目标】
使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。【内容简析】
本节课是数轴的第一课时,在学生学了有理数概念的基础上,从标有刻度的温度计来表示温度高低这个事实出发引出数轴画法和用数轴上点表示数的方法,可以使学生借助图形的直观来理解有理数的有关问题,突出知识的产生过程,也为以后学习实数奠定基础。本节的重点是掌握数轴的概念和画法,明确其三要素缺一不可。数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。【流程设计】
一、情景创设
温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?
数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
二、新知探索
1.请学生阅读新课思考:
①零上25℃用正数表示。0℃用数表示;零下10℃用负数表示。②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数? ④表示+2的点在什么位置?表示-3的点在什么位置?
⑤原点向右个单位长度的a点表示什么数?原点向左11个单位长度的b点表示什
2么数?
2.数轴的画法
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点o,叫做原点,用这点表示数0;(相当于温度计上的0℃。)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)
第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,?,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,?。
3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
三、范例共做
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里? 分析:原点、正方向、单位长度这数轴的三要素缺一不可。解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,?32,+(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。
解答:观察数轴易知:
(1)有最小的正整数,它是1,没有最大的正整数;
(2)没有最小的负整数,有最大的负整数,它是-1. 例4:比较–3,0,2的大小。
分析一:先在数轴上分别找到表示–3、0、2的点,由“右边的数总比左边的数大”得到–3<0<2;
分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出–3<0<2。
四、检测反馈
1.判断下图中所画的数轴是否正确?
(1)
2.下面数轴上的点a、b、c、d、e分别表示什么数?
(2)
3.将-
3、、21、-
6、、1、-
5、1各数用数轴上的点表示出来。224.画一条数轴,并在上面标出下列的点。
±100
±200
±300 提示:1.图(1)是数据标注错误;图(2)的画法是正确的,在以后的学习中会遇到。
五、小结提高
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
六、课后思考
1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?(1)向右移动11个单位长度,再向左移动2个单位。2(2)向左移动3个单位长度,再向左移动2个单位长度。
2.数轴上表示3和-3的点离开原点的距离是多少?这两个点的位置有什么不同? 3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?
4.某数轴的单位长度是1cm,若在这个数轴上随意画一条长100cm的线段ab,则线段ab盖住的整数点有()
a.99个或100个
b.100个或101个
c.99个或101个
d.99个、100个或101个
高一数学教案 篇2
学 习 目 标
1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;
2 能够在空间直角坐标系中求出点坐标
教 学 过 程
一 自 主 学 习
1平面直角坐标系建立方法,点坐标确定过程、表示方法?
2一个点在平面怎么表示?在空间呢?
3关于一些对称点坐标求法
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于 轴对称点 ;
关于 对轴称点 ;
关于 轴对称点 ;
二 师 生 互动
例1在长方体 中, , 写出 四点坐标
讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?
变式:已知 ,描出它在空间位置
例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标
练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标
练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标
三 巩 固 练 习
1 关于空间直角坐标系叙述正确是( )
A 中 位置是可以互换
B空间直角坐标系中点与一个三元有序数组是一种一一对应关系
C空间直角坐标系中三条坐标轴把空间分为八个部分
D某点在不同空间直角坐标系中坐标位置可以相同
2 已知点 ,则点 关于原点对称点坐标为( )
A B C D
3 已知 三个顶点坐标分别为 ,则 重心坐标为( )
A B C D
4 已知 为平行四边形,且 , 则顶点 坐标
5 方程 几何意义是
四 课 后 反 思
五 课 后 巩 固 练 习
1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标
2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系
⑴求 坐标;
⑵求 坐标;
数轴教案 人教版 篇3
数轴教案(精选多篇)
数轴教案
1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。重点:数轴的概念和用数轴上的点表示有理数。难点:同上。一。创设情境引入新知
观察屏幕上的温度计,读出温度。:在一条东西向的马路上,有一个汽车站,汽车站东3m和处分别有一
棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。二。合作交流探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?
:在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答”到” 游戏前可先不加任何条件,游戏中发现问题,进行弥补。总结游戏,明确用直线表示有理数的要求, 提出数轴的概念和要求。三。动手动脑学用新知
1.你能举出生活中用直线表示数的实际例子吗?.2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数?每个数到原点的距离是多少?
四。反复演练掌握新知
教科书12练习。画出数轴并表示下列有理数:
,-,-, , ,写出数轴上点a,b,c,d,e所表示的数:
问题1先给出情境,学生观察,思考,研究,表示。增强学生的合作意识。满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确。游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么。明确数轴的正确画法和要求。练习中注意纠正学生数轴画法的错误和点的表示错误。1.数轴需要满足什么样的条件;
2.数轴的作用是什么?
必做题:教科书第18页习题:第2题。1.在数轴上,表示数-3, ,0, , ,-1的点中,在原点左边的点有个。2.在数轴上点a表示-4,如果把原点o向负方向移动个单位,那么在新数轴上点a表示的数是
-一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?
你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
总结可以由教师提出问题,学生总结,教师完善。2题也可以启发学生反过来想,即点a向正方向移动个单位。3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了。课题:数轴
教学目标:
1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示
法,以及利用数轴比较有理数的
大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思
想方法,培养学生的观
察、归纳与概括的能力。
1、学习目标:掌握有理数在数轴上的
表示法,以及利用数轴比较有理数的大小。
2、理解相反数的意义及求法。
3、了解数轴的意义及画法
重点 难点:
1.正确掌握数轴的画法;用数轴上的点表示有理
数;求已知数的相反数。
2.有理数和数轴上的的点的对应关系。
教学方法:合作探究交流
学法指导:观察归纳概括
教学过程:
一、情景引入:
你会读温度计吗?完成课本43页最上面 的读温度计的问题。
我们能否用类似温度计的图形表示有理
数呢?
二、讲授新课:认真阅读课本第43页至45页,完成下列问题
画一条水平直线,在直线上取一点o,选取某一长度作为▁▁▁▁,规定向右 的方向为▁▁▁,就得到了数轴。
于是,+3可以用数轴上位于原点右边3个单位的
点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在
数轴上位于原点左边的点表示?,任何有理数都可以用数轴上的一个点来表示。
1414
三、例题讲解、巩固提高
例1.如图,指出数轴上a、b、c、d各点表示什么数?
adcb–2–解:点a表示-2;点b表示2;点c表示0;
点d表示-1
练习:画出数轴并用数轴上的点表示下列个数: 33,-5,0,5,-4,-.22
四、继续探究 与-2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与-5,与-呢?
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。练习:
1、5的相反数是▁▁;▁▁的相反
数是-。
议一议
3232
数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?
数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-。
3、合作交流
什
有理数与数轴上的点之间存在怎样的关
系?
什数?
如何利用数轴比较有理数的大小?
5、随堂练习:
下列说法正确的是
a、数轴上的点只能表示有理数
b、一个数只能用数轴上的一个点表示
c、在1和3之间只有2
d、在数轴上离原点2个单位长度的点表
示的数是2
语句:①-5是相反数?②-5与+3互为相反数
③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是
a、①②⑥b、②③⑤c、①④d、③④⑤⑥
大于-4而小于4的整数有▁▁▁▁▁▁。
用“﹤”或“﹥”号填空
①-5▁▁-7②0 ▁▁-2③▁▁▁-
写出下列各数的相反数
,-3,0,a,2a-3。
课堂小结:我的收获:
作业教材习题及数学导航
教后反思
课题:1.数轴
学习目标:
1、掌握数轴概念,理
解数轴上的点和有理数的对应关系。
2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数
轴上的点读出所表示的有理数。
3、使学生初步理解数形结合的思想。
教学重点:数轴的概念。
教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合 的思想方法。
教学过程:
一、创设情境:
问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和
米处分别有一棵柳树和一棵杨树,汽车站西3米和米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?
师提出问题:先画什么呢?
先找什么?再找什么?
怎样正确摆放这几者的位置呢?
问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置
关系
师生合作完成
二、合作交流,探索新知
引导学生思考上面的问题,引导学生建立数轴的概念。
问题3:怎样正确地画一条数轴,数轴需哪几个条件?
怎样才能将不同数的点清楚表示出来?
尝试画满足条件的数轴。
可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴 的特征:
数轴是一条直线。
数轴三要素:原点
正方向
单位长度
由此我们可以说:规定了原点、正
方向和单位长度的直线叫做数轴。练习:下列图形哪些是数轴?哪些不是,为什么?
三、动手操作,亲身体验。
问题
4、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
画出数轴并表示下列有理数
9-22-2
写出数轴上a、b、c、d、e表示的数
观察发现:哪些数在原点的左边?哪些数在原点的右边?由此你会
发现什么规律?
每个数到原点的距离是多少?由此你会发现什么规律?
小组讨论,交流归纳完成上述问题。
四、巩固提高
1、画出数轴并表示下列有理数。
-3-2-
-30-20-
-2-
2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。
六、作业:
必做题:教科书第14面习题1、2第二题123
亿库教育网**
亿库教育网**
亿库教育网**
亿库教育网**
课题:1.数轴
小学数学数轴教案 篇4
§ 数轴
教学目标: 1. 知道什么是数轴,如何画数轴。
2. 知道如何将有理数在数轴上表示出来,能说出数轴上表示有理数的点所表示的数。知道任一个有理数在数轴上都有唯一的点与之对应。
教学重点: 学习数轴,用数轴上的点表示有理数。教学难点:
利用数轴学习有理数的大小性质。教学过程:
一、引入:
请读出下面温度计所表示的温度:
二、讲授新课:
1.考察温度计,直接给出数轴的定义。2.讲解例1。
提问:在数轴上,已知一点p表示数(-5),如果数轴上的原点不选在原来位置。改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生提出:数轴的三要素缺一不可。3.小结:
如何根据数轴的定义画一条数轴?如何在数轴上画出表示有理数的点? 4.随堂练习:
1.教科书第54页练习第1,2,3题。
2.补充练习:在数轴上能否实际画出表示一亿万分之一的点?这个点存在吗?(答:很难画出;存在。)
四、课外作业 1.
2.补充题:
(1)画一条数轴并画出分别表示±,±,±的各点。(2)画一条数轴并画出分别表示1000,2000,5000的各点。
注:以上两个补充题的目的是,用数轴表示已知数时,要根据已知数适当地选择单位长度和坐标原点的位置。
(3)在数轴上标出到原点距离小于3的整数所表示的点。(4)在数轴上标出-5和+5之间的所有整数的点。
初一数学数轴教案 篇5
教学目的
使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点
1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程:
一、一、复习
1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授
例1.解方程(见课本)
分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。那么怎样化简呢?引导学生分析,并求出方程的解。交流体会。
例2.解方程(见课本)
例3:已知公式V=中,V=120、D=100、∏=,求n的值。(保留整数)
分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
V V0 a t
0 2 8
48 3 14
15 5 4
76 13 7
四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业。
教科书第13页第3题
初一数学数轴教案 篇6
一、回顾复习旧知
1、读数,指出哪些是正数,哪些是负数?
- + -4/5 +7/120 +305 -88
二、新课讲授
1、教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?
组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:
我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
2、观察数轴,比较数的大小。
引导学生观察数轴。
①从0起往右依次是?从0起往左依次是?你发现什么规律?
②在数轴上分别找到
和-对应的点。如果从起点分别到和-处,应如何运动?
师及时小结:
数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
三、巩固练习
1、完成教材第5页的“做一做”。
学生独立练习,指名汇报。
2、完成教材第6页练习一的第4、5题。
组织学生独立完成,并在小组中相互交流、检查。
四、课堂小结
通过这节课的学习,你有什么收获?
七年级数学数轴教学反思 篇7
本节课,当学习用数轴上的点表示有理数时,应让学生了解任何一个有理数都可用数轴上的点表示,但数轴上点所表示的数并非都是有理数。学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。然后结合4和-4在数轴上的表示引到相反数的概念及在数轴上反映出的几何性质。注意相反数概念中的“只有”两字及对于零的特殊规定。在整个数轴的教学中始终注重数与形的结合教学,在最后设置了一个实际问题,如:老师从学校出发,骑车向东走了3千米到达小聪家,继续向东走了千米到达小明家,最后向西走了千米到达小颖家.你能用数轴表示小聪家、小明家、小颖家以及学校的位置吗?你能说出小颖家在学校的什么位置吗?
本课之所以这样设计,理由是:(1)从教学目标看,数轴是数形结合的典范,也是数形结合思想的初次出现,抽象性较高,同时它也是重中之重的概念,所以老师必须提供足够生动的背景,使学生获得比较深刻的感性认识。(2)从教学艺术的.需要看,运用生动活泼的场景可以使学生集中注意力,激起学生浓厚的兴趣,愉快地进入课堂教学的最佳状态。在这种教学情景中,学生理解最深刻,记忆最牢靠。特别要强调的是:深刻的感性认识是学生在理解、记忆、应用等思维活动过程中的强有力的支撑点。(3)在动态的演示与多种情况的归纳,有利于提高学生动态解决问题的意识,建立运动的观点,同进也有利提高学生的数学建模能力。(4)一些感性认识的建立,也有利学生学习下一节“绝对值”的概念,起承上启下的作用。
数学教案 篇8
大班:和时间赛跑
活动目标
1、 认识时钟,知道时钟的基本用途。
2、 感知时间,体验时间的长短。
3、 发现时间的价值与自身努力的关系。
活动准备 时钟、写字本、积木、图书、画纸、铅笔、水彩笔等。
活动过程 1、 认识时间 老师出示时钟,提问: 这是什么,它有什么用?(这是时钟,是用来看时间的) 你会看时间吗?现在是几点?(9点) 你怎么知道的?(长针指向12,短针指向9,就是9点整) 如果长针和短针都指向12,是几点?(12点) 小结:当长针指向12时,短针指向几,就是几点。
2、感知时间 有谁知道一分钟有多长?(很短、不知道、很长) 我们一起来玩“和时间赛跑”的游戏。老师给你们一分钟的时间,在这一分钟里,你们可以自由选择做什么事,时间到了就停下,我们来比一比看看谁做的事情多。 (幼儿游戏,教师计时。孩子们纷纷离开座位,有的去拿纸,有的去拿积木,还有一个孩子呆呆地站在一边在想要做的事。) 幼儿交流自己在一分钟时间里做的事情: 我觉得一分钟实在太短了,什么事都没做时间就过去了; 我在一分钟里画了一个圈; 我在一分钟里搭了一个积木┄┄ 小结:小朋友都说一分钟太短,老师在这一分钟里可做了许多事情:回答了天天的问题,给如如拿了一张纸,观察了所有小朋友的活动,看到有人在争吵,然后找了把椅子坐下来。我们再玩一次,看看这一次我们在一分钟里能做多少事情。 (我这样做小结的目的是希望孩子们能感觉到他们做得很多事情都被忽略了,只要抓紧时间就可以做许多事。第二次游戏时,好多孩子果然加快了速度,没再出现争执。) 幼儿再次交流自己在一分钟时间里做的事情: 我在一分钟里拿了一张纸,画了一个小人。我在一分钟的时间里找到了自己的数学本,写了26个数字;我在一分钟里拿了一堆雪花片,搭了两架飞机; 我在一分钟里看了5页书......
3、总结交流 提问:今天的活动,你有什么收获和发现? 学会了看时钟;知道一分钟很短,但我们加快速度也能做许多事情。
数学数轴教学反思 篇9
本节课,当学习用数轴上的点表示有理数时,应让学生了解任何一个有理数都可用数轴上的点表示,但数轴上点所表示的数并非都是有理数。学生不但要知道数轴上 给定的点表示的数,还要能把给定的数用实心点表示在数轴上。然后结合4和-4在数轴上的表示引到相反数的概念及在数轴上反映出的几何性质。注意相反数概念 中的“只有”两字及对于零的特殊规定。在整个数轴的教学中始终注重数与形的结合教学,在最后设置了一个实际问题,如:老师从学校出发,骑车向东走了3千米 到达小聪家,继续向东走了千米到达小明家,最后向西走了千米到达小颖家. 你能用数轴表示小聪家、小明家、小颖家以及学校的位置吗?你能说出小颖家在学校的什么位置吗?
本课之所以这样设计,理由是:(1)从教学目标看,数轴是数形结合的典范,也是数形结合思想的初次出现,抽象性较高,同时它也是重中之重的概念,所以老师 必须提供足够生动的背景,使学生获得比较深刻的感性认识。(2)从教学艺术的需要看,运用生动活泼的场景可以使学生集中注意力,激起学生浓厚的兴趣,愉快 地进入课堂教学的最佳状态。在这种教学情景中,学生理解最深刻,记忆最牢靠。特别要强调的是:深刻的感性认识是学生在理解、记忆、应用等思维活动过程中的 强有力的支撑点。(3)在动态的演示与多种情况的归纳,有利于提高学生动态解决问题的意识,建立运动的观点,同进也有利提高学生的数学建模能力。(4)一 些感性认识的建立,也有利学生学习下一节“绝对值”的概念,起承上启下的作用。
数学数轴教学反思 篇10
本节课,当学习用数轴上的点表示有理数时,应让学生了解任何一个有理数都可用数轴上的点表示,但数轴上点所表示的数并非都是有理数。学生不但要知道数轴上给定的点表示的数,还要能把给定的数用实心点表示在数轴上。然后结合4和-4在数轴上的表示引到相反数的概念及在数轴上反映出的`几何性质。注意相反数概念中的“只有”两字及对于零的特殊规定。在整个数轴的教学中始终注重数与形的结合教学,在最后设置了一个实际问题,如:老师从学校出发,骑车向东走了3千米到达小聪家,继续向东走了千米到达小明家,最后向西走了千米到达小颖家.你能用数轴表示小聪家、小明家、小颖家以及学校的位置吗?你能说出小颖家在学校的什么位置吗?
本课之所以这样设计,理由是:
(1)从教学目标看,数轴是数形结合的典范,也是数形结合思想的初次出现,抽象性较高,同时它也是重中之重的概念,所以老师必须提供足够生动的背景,使学生获得比较深刻的感性认识。
(2)从教学艺术的需要看,运用生动活泼的场景可以使学生集中注意力,激起学生浓厚的兴趣,愉快地进入课堂教学的最佳状态。在这种教学情景中,学生理解最深刻,记忆最牢靠。特别要强调的是:深刻的感性认识是学生在理解、记忆、应用等思维活动过程中的强有力的支撑点。
(3)在动态的演示与多种情况的归纳,有利于提高学生动态解决问题的意识,建立运动的观点,同进也有利提高学生的数学建模能力。
(4)一些感性认识的建立,也有利学生学习下一节“绝对值”的概念,起承上启下的作用。
《轴对称》数学教案 篇11
《轴对称图形》
教学内容:
小学数学第四册新增内容《轴对称图形》
教学目标:
1、在游戏比赛中凸现轴对称图形的基本特征,并通过观察、动手操作知道沿着一条直线对折,直线两边完全重合的图形叫轴对称图形。
2、通过判断、验证、比较进一步加深对轴对称图形的认识和理解,并认识对称轴,根据特征会找和画一个轴对称图形的对称轴。
3、在判断、验证、比较中培养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念。在交流、合作中学生学会从多种角度思考问题,培养思维的灵活性。
教学重点:
通过观察、动手操作,初步认识轴对称图形。
教学难点:
会找并且会画轴对称图形的对称轴。
学科素养:
养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念
学会从多种角度思考问题,培养思维的灵活性。
教学过程:
一、比赛引入,聚焦轴对称图形的基本特征。
师:今天上课我们先做个游戏,比一比女同学和男同学谁的眼力最好,老师分别给你们看图形的一部分,你们马上猜出这个图形是什么?准备好了么?
(出示多媒体):
女生::蝴蝶。
师:女生,你们都同意么?(出示)
反馈:很好(竖起大拇指)。
出示:
男生1:木棍。男生2:铲子。男生:……
出示:
反馈(淡淡地宣布):第一局男生输了。
出示第二轮题:
女生异口同声:飞机。
随即媒体出示:
反馈:真厉害。
问:现在轮到男同学了,媒体出示——
男生3:盆子。男生4:帽子。男生:……
媒体出示:
反馈:第二轮男生又输了,再看最后一轮。
出示:
女生兴奋地叫起来:剪刀!
随即出示并赞扬道:女生的眼力真厉害,男生看你们的了。
出示:
男生5:书。
男生6:乒乓板。
男生:……
出示:并同情地说道:哎!可惜,又错了。
生:老师,这不公平,女生猜得简单。
教师回头一看银幕:你们猜得也很容易的呀!
生:不是的,女生猜的图形两边一模一样的。
(分别指着不同图形让同学们用语言说一下上下还是左右两边一模一样)
评价:你不仅会观察图形中的特征,还能用简洁的语言叙述出来,一句话就让大家都听明白了,真厉害!
师:老师画一条直线(教师在媒体的蝴蝶上画了一条对称轴,)你们说的是不是这条直线的两边一模一样。
追问:那么飞机和剪刀的这条直线在哪里?(学生用手比划)男生猜的图形有没有这条直线?
【设计说明:由于比赛内容的不公平,必然导致比赛结果的不公平,从而激发每个学生在为不公平比赛申诉中发现图形的特征,即直线的两边完全重合,直接突出知识点】
二、缓和矛盾,揭示概念
问:这样看来不是我们男同学的眼力差,而是女同学猜的图形很特殊。那么男同学,如果老师也给你们这样的图形,你们能一下子猜出来吗?
银幕出示:半个兔子头
男生:兔子
追问:老师把图打印了出来,你们刚刚说女生的团都有一条直线,兔子的直线在哪里?(指一指)
追问:你们刚刚又说直线两边的图案是?
操作:那么我想请一个同学用最简单的方法证明直线两边的图形完全一样?(停顿,给同学们思考后)不过我提个要求,要求边验证边说出验证过程。
生:边操作边说,把“兔子头”对折,直线两边一模一样。
(在学生折前:你是不是随便折,那你怎么折?在学生折的过程中:教师抓住“对折”要沿着一条直线对折、“一模一样”数学中叫“完全重合”,引导“沿着一条直线对折,直线两边完全重合”。(板书)
师:像这样沿着一条直线对折后,直线两边完全重合的图形叫什么图形?(板书:轴对称图形,并标注拼音zhóu)
全班朗读课题。
【设计说明:通过比赛,直接抓住图形的主要特征,激发学生探究的欲望,学生在动手操作验证中揭示轴对称图形的概念,自然流畅。】
三、在判断、辨析中进一步理解轴对称图形
师:同学们现在如果给你一个图形,你能判断它是不是轴对称图形吗?
出示图1:
生:手势判断(是轴对称图形),一位学生上台演示证明(先指一指直线,再折,引导学生用规范的数学语言叙述概念)
出示图2:
生:手势判断(一小部分学生认为是的)
师:请认为是轴对称图形的同学上来验证给大家看。
反馈:生活中有一些图形看看是的,很有迷惑性,但实际上却不是的。
出示图3:飞机和
生:手势判断(是轴对称图形),一位学生上台演示证明,下面的学生一起说:沿
着一条直线对折后,直线两边完全重合,所以是轴对称图形。)
【设计说明:在正与反的判断辨析中进一步明确沿着一条直线对折,直线两边完全
重合的图形是轴对称图形】
出示图4:
生:手势判断(一部分学生认为是的)
师:这一次请大家在脑中“折一折”验证一下,验证后可以改变注意。
一会儿,仅剩下少数学生坚持说“是的”,教师请其中的一位学生动手验证,结果发
现不完全重合。
反馈:最开始的时候很多同学一会儿说是,一会儿说不是,但是后面老师说了句什么话,脑中折一下,很多人改变了主意是怎么回事?
生:老师,如果这双鞋背靠背,或者头对头就是轴对称图形了。(准备实物再对折)
师出示图5:
生:手势判断(大部分学生认为不是的)
生1:如果两条鱼嘴对嘴或尾对尾就是了,并上台演示对折,不完全重合。
生2:我认为是的,这样折不行,这样折就行了,生演示
评价:对呀,说的真好,很会动脑筋,思维非常灵活,当发现这样折不行,可以换个角度折,只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。
【设计说明:在判断完图3时,部分学生有可能还停留在直线两边“一模一样”,而对对折后完全重合理解还不够透彻,通过图4的判断,让学生在脑中“折”(发展学生空间想象能力)到引导学生动手验证,在辨析中进一步加深对轴对称图形特征的认识,图5由于图4的负迁移,会产生争议,组织学生辨析,明确只要找到一条直线,直线两边完全重合的图形就是轴对称图形。同时又打破了学生的思维定势,更活跃了学生的思维。】
四、认识对称轴
师:刚刚同学们都说了轴对称图形都能沿着一条直线对折的,直线两边完全重合。(教师用手指出并画对称轴,如图像这样的一条直线我们称它“对称轴”)
(上台画爱心,如果画的不一样)
反馈:观察生1画的和老师有什么不一样?
师:一般在数学上,画对称轴用直线,两边都要出头。
追问:还有同学想画么,老师最后请一位同学上来画(画一个不是轴对称图形的溜冰鞋)
反馈:你看看,同学们有不同意见了。让你画对称轴,只有轴对称图形才有,不是轴对称图形没有对称轴,老师和你开个玩笑的。
全体学生练习画轴对称图形的对称轴。反馈略(书P:54/3)
五、认识几何图形中的轴对称图形并能找到对称轴。
师:接下去,同桌合作在信封内的几何图形中挑出轴对称图形。
(图1)(图2)(图3)(图4)(图5)(图6)
生1:图3、图4、图6是轴对称图形。
生2:图2也是轴对称图形。
生3:我折过的,图2不是轴对称图形。
师:看样子,其他图形没意见,分歧在图2。请生3演示证明给大家看为什么它不是轴对称图形。
生3:演示证明
生2:这样折不行的,应该这样折,生2迫不及待上前演示证明:
师:对呀!只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。
师:接下去请找出轴对称图形的对称轴,看谁找得最多!
反馈:图2有一条对称轴。图4有两条对称轴。图3有4条对称轴。
讨论圆的对称轴。
生1:圆有四条对称轴。并用自己的学具指给大家看他所折的折痕。
生2:还有也,这位学生用自己的学具又折出两条。
生3:有很多很多条,这位学生也用自己的学具演示给大家看。
师:由于学具比较小大家看不清楚,老师请电脑演示给大家看。(多媒体演示)
数也数不清的条数,数学上叫无数条。
师:刚才我们学习了数学中的轴对称图形,你能在生活中找到轴对称图形吗?
生1:黑板是轴对称图形。
生2:窗子是轴对称图形。
生3:红领巾是轴对称图形。
生4:大众出租车的牌子。
生……(教师规范成平面图形)
师:老师也找了一些。(媒体出示生活中的轴对称图形有脸谱、剪纸……,渗透民族文化教育)
小结:
你今天有什么收获?
作业:
师:今天的回家作业就是利用课上所学的知识,剪一个轴对称图形,并向大家介绍你的巧方法。
【设计说明:由于课堂上的时间是有限的,怎样让课堂教学得于在课外有趣的延伸,剪一个轴对称图形,既体现了对轴对称图形进一步理解和运用,又有动手的乐趣,一举两得。】
板书设计
轴对称图形
轴对称图形
沿着一条直线对折,直线两边能够完全重合,这样的图形就叫做轴对称图形