欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教案大全

实用的小学数学教案3篇 小学数学教案范例

时间:2024-03-25 16:39:14 教案大全

  下面是范文网小编收集的实用的小学数学教案3篇 小学数学教案范例,以供参考。

实用的小学数学教案3篇 小学数学教案范例

实用的小学数学教案1

教学内容:课本第69页例2、3;练一练;《作业本》第31页。

  教学目标:理解解比例的意义,掌握解比例的方法,能正确地解比例。

  教学重点:解比例的基本方法与依据。

  教学难点:解比例的方法

  教学过程:

  一、复习:

  1、什么叫比例?

  2、什么是比例的基本性质?

  3、怎样检查两个比是否成比例?

  二、新授:

  1、先请学生心里想好一个比例(数目简单些),如2:3=4:6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?

  2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。

  3、求比例中的未知项,叫做解比例。

  4、例2解比例:

  30∶12=45∶χ

  解:30χ=12×45…………根据是什么?

  χ=………不先求积,先约分比较简便。

  χ=18

  5、例3解比例=

  ①请学生独立尝试;

  ②注意格式;

  ③反馈练习。

  6、试一试。

  三、巩固练习:

  1、解比例:(练一练第1题第一竖行)

  2、练一练第2题

  3、补充:χ∶0.8=3∶1.2

  四、小结:

  这节课学习了什么?

  五、《作业本》第31页。

  小学六年级数学教案——用比例知识解答应用题教案

  教学目的

  1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

  2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

  3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

  教学重点

  通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

  教学难点

  通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

  教学过程

  一、复习准备.

  下面每题中的两种量成什么比例关系?

  (1)速度一定,路程和时间.

  (2)总价一定,每件物品的价格和所买的数量.

  (3)小朋友的年龄与身高.

  (4)正方体每一个面的面积和正方体的表面积.

  (5)被减数一定,减数和差.

  谈话引入:我们今天运用正反比例的知识来解决实际问题.

  (板书:用比例知识解应用题)

  二、探讨新知.

  (一)教学例5(用比例解答下题)

  修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

  1.学生读题,独立解答.

  2.学生反馈:

  3.分析:

  (1)为什么需要用正比例解答?

  (2)12和要求的天数之间有什么关系?

  4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

  (二)反馈.

  1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

  2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

  三、巩固反馈.

  1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

  2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

  3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

  4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

  四、课堂总结.

  通过这堂课的学习,你有什么收获?

  小学六年级数学教案——正比例和反比例的比较

  学目标

  1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

  2.使学生能正确判断正、反比例.

  教学重点

  正、反比例的联系和区别.

  教学难点

  能正确判断正、反比例.

  教学过程

  一、复习准备

  判断下面每题中两种量成正比例还是成反比例.

  1.单价一定,数量和总价.

  2.路程一定,速度和时间.

  3.正方形的边长和它的面积.

  4.时间一定,工效和工作总量.

  二、新授教学

  (一)出示课题

  教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

  小学六年级数学教案——比、比例和比例尺的概念的整理和复习

  教学内容:教科书第35页的第l一3题,练习九的第l一3题。

  教学目的:

  1.使学生明确。比例”和“比”、“比值”等概念之间的联系和区别。,

  2,使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。

  3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。

  教具准备:投影仪、投影片、小黑板。

  教学过程:

  一、复习;;比”和“比例”

  1.复习整理。

  教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?

  随着学生的回答,教师板书如下表。

  指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:

  2.练习。

  用小黑板出示下面的题让学生完成。

  (1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是( )。

  (2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是( ),女生人数和全班人数的比是( )。

  (3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有( )人。

  二、复习解比例

  1.完成第35页的第2题。

  指名回答什么叫解比例,解比例要根据什么性质。

  接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

  然后让学生完成第2题的其余习题。

  三、复习正比例、反比例

  用投影片逐一出示下面问题,让学生回答。

  1.什么叫成正比例的量和正比例关系?

  2.什么叫成反比例的量和反比例关系?

  3,正比例和反比例有什么联系和区别?

  学生回答,教师填写小黑板上的表。

  然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

  使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的.数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。

  四、课堂练习

  完成练习九的第1—3题。

  1.第1题.学生独立完成,集体订正。在订正第(4)小题时,可以先让学生说说12的约数有哪?然后说出自己用选出的四个约数组成的比例是什么。教师把学生说出的比慎写出来。订正第(6)小题时,要注意检查学生是否把图上距离和实际距离的单位续一了。

  2,第2题,除第(2)、(7)小题教师要提示外,其余各题由学生自己判断,第(2)行驶的路程

  小题,教师可以先说明 =周长,再让学生判断。第(7)小题,可以先让几个学生说说自己的体重和身高,教师把数据记下来,再让学生判断。使学生知道:人的体重和身高有一定的关系,一般人的体重是随着身高而增加的,但体重和身高不成正比例关系。

  3.第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。

  小学六年级数学教案——正比例和反比例的比较

  教学目标

  1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

  2.使学生能正确判断正、反比例.

  教学重点

  正、反比例的联系和区别.

  教学难点

  能正确判断正、反比例.

  教学过程

  一、复习准备

  判断下面每题中两种量成正比例还是成反比例.

  1.单价一定,数量和总价.

  2.路程一定,速度和时间.

  3.正方形的边长和它的面积.

  4.时间一定,工效和工作总量.

  二、新授教学

  (一)出示课题

  教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

  (二)教学例7(课件演示:正反比例的比较)

  小学六年级数学教案——解比例教案

  教学目标

  1.使学生理解解比例的意义.

  2.使学生掌握解比例的方法,会解比例.

  教学重点

  使学生掌握解比例的方法,学会解比例.

  教学难点

  引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

  学过的含有未知数的等式.

  教学过程

  一、复习准备

  (一)解下列简易方程,并口述过程.

  2 =8×9

  (二)什么叫做比例?什么叫做比例的基本性质?

  (三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  (四)根据比例的基本性质,将下列各比例改写成其他等式.

  3∶8=15∶40

  二、新授教学

  (一)揭示解比例的意义.

  1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

  2.学生交流

  根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

  3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

  (二)教学例2.

  例2.解比例 3∶8=15∶

  1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

  2.组织学生交流并明确.

  (1)根据比例的基本性质,可以把比例改写为:3 =8×15.

  (2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

  (3)规范并板书解比例的过程.

  解:3=8×15

  =40

  (三)教学例3

  例3.解比例

  1.组织学生独立解答.

  2.学生汇报

  3.练习:解下面的比例.

  = ∶ = ∶

  三、全课小结

  这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

  四、巩固练习

  (一)解下面的比例.

  1. 2. 3.

  (二)根据下面的条件列出比例,并且解比例.

  1.5和8的比等于40与 的比.

  2. 和 的比等于 和 的比.

  3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.

实用的小学数学教案2

  【教学目标】

  1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

  3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

  【教学重难点】

  理解比的意义,比与分数、除法的关系。

  【教学过程】

  一、创设情境,引入比。

  1.图片激趣,引发讨论,设置悬念。

  2.电脑呈现例l主题图。

  提问:2杯果汁和3杯牛奶这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?

  3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

  二、自主探索,认识比。

  (一)初步理解比

  1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

  果汁的杯数相当于牛奶的2/3,我们还可以说成果汁与牛奶杯数的比是2比3

  牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2

  2.看书自学, 汇报交流:

  (1)写法

  (2)各部分名称

  (3)比是有序的。

  3.完成p68试一试

  (二)深入认识比

  1.认识不同量之间的比。

  (1)生读例2,师:读了这条信息,你能提出什么数学问题?

  (请学生分别算出它们的.速度,填入表格。)

  (2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

  交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

  (3)追问:900:15表示什么?900:20呢?(速度)

  2.丰富对不同类量的两个数量比的认识。

  张祥买3本笔记本用了10.5元。

  提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

  3.总结概括比的意义。

  (1)观察一下这几组式子,总结相同的特点。

  (2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

  (3)小结:两个数的比归根结底表示的都是两个数相除。

  三、自学课本,内化比。

  1.自学课本p69

  2.反馈:通过看书,你还知道了什么?

  *求比值。

  *分数形式的比。

  *理解比、除法、分数之间的关系

  利用表格整理知识

  名称

  相互联系

  区别

  比

  前项

  :(比号)

  后项

  比值

  倍数关系

  除法

  被除数

  (除号)

  除数

  商

  运算

  分数

  分子

  (分数线)

  分母

  分数值

  数

  *比的后项可以是0吗?你是怎样想的。

  *你还有没有什么疑问?

  四、多样练习,应用比。

  *说一说(基本练习)

  *辩一辩(判断对错)

  五、回顾梳理,总结比。

  今天我们共同学习了什么?对于比,你有什么样的认识和收获?还有什么问题吗?

实用的小学数学教案3

  苏教版数学教材从四年级(上册)起,每册都编写一个解决问题的策略的单元。形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神是《数学课程标准(实验稿)》确定的课程目标之一,教材编写解决问题的策略这样的单元,就是为了贯彻落实课程目标。解决问题的策略是在长期数学教学中不断地培养的,是通过各个领域内容的教学逐渐形成的,单独编写解决问题的策略这个单元,能加强策略的形成和对策略的体验。

  在数学教学中,解决问题活动的价值不局限于获得具体问题的结论和答案,它的意义更在于使学生学会解决问题,体会每个人都应当有自己对问题的理解,并由此形成自己解决问题的基本策略,还体会解决问题可以有不同的策略。数学教学在这种鼓励个性发展的理念下进行,学生的创新精神才可能真正得到培养。

  策略的原意是计策和谋略。解决问题的策略是解决问题的计策与谋略,具体表现为对解决问题方法、手段的思考与选择运用。解决问题,特别是解决新颖的问题需要有策略,解决问题的策略又是在解决问题的活动中形成和积累的。本单元以有条理地整理信息,发现数量之间的联系作为策略教学的切入口。发现和利用数量关系是解决实际问题的途径,通过整理信息明确和把握数量关系,既是可操作的方法,也是解决问题的策略。让学生学会整理信息的常用方法,体会它的作用与意义,从而内化成自己的策略是教材的编写思想。本单元的教学内容分成两部分,前一部分是解决两步计算的问题,后一部分是解决三步计算的问题。

  1、 让学生把信息填入表格,学习整理信息的方法,体会对解决问题的作用。

  本单元选择表格作为整理信息的工具,有两个原因: 一是学生对表格比较熟悉,他们从一年级学习数学起就经常接触表格,进行过许多填表活动。因此,选择填表整理比较贴近学生实际,宜于学习。二是表格条理清楚,数学化程度比较高。填入表格里的都是经过筛选后的重要信息和有用数据,实际问题里的许多情节性内容都被过滤掉了。因此,填表整理能帮助学生把握住实际问题里的数学内容。

  教材充分注意到学生初步学习利用表格整理信息,在编写上尽量循序渐进,逐渐提高。

  (1) 把已知条件和要求的问题全部填进表里。

  第65页例题和相应的想想做做以归一问题和归总问题为素材。例题是归一问题,先求小华买5本练习本用去多少元,再求小军42元买了多少本。在每个问题的教学过程中都设计了填表整理讨论思路列式解答这样的活动线索,教学这道例题要注意四点。

  第一,带领学生经历填表的过程。教材里呈现了一张已经填好的表格,课堂教学要展开填表的过程和方法,一方面在现实情境中收集数学信息,另一方面找到各个数量在表格中的位置。要预先设计一张待填的表格,可以师生共同填写,也可以让学生填写。

  第二,引导学生理解表格的结构和内容。表格里的条件和问题不是随意摆放的,是根据数量之间的联系安排的。填表以后让学生说说表里有些什么,体会各人买的本数与用去的钱数是紧密联系的数量,列表整理就是显示出这些数量的对应关系,表格也是为此而设计的。

  第三,启发学生利用表格理出解题思路。填表的目的是理出思路、找到问题的解法。可以让学生看着表格顺着两条思路去想,从买3本用去18元这组数量,想到能求出每本笔记本的价钱;从买5本要用多少钱这组数量,想到需要知道每本的价钱。两条思路交叉在每本笔记本多少元上,解决问题的方法就找到了。

  第四,组织学生反思解决问题的全过程。第66页根据两道题的解答结果,填出括号里的数,并说说自己的发现。学生从中会有许多体会,如小明买3本用了18元、小华买5本用了30元、小军买7本用了42元,他们每本笔记本的价钱是相同的。这个发现是归一问题的特征。又如求小华用去多少元和小军买了多少本,都要先算笔记本的单价,都是通过小明买3本用去18元求得的。这个发现使学生进一步明确数量关系和解题思路。又如买的笔记本多(少),用去的钱也多(少)。这个发现让学生感受函数关系。

  (2) 根据要解决的问题,选择相关的条件填入表格。

  第68页例题和试一试以比较容易的三步计算实际问题为素材,继续通过列表整理,培养解题思路。教材在编写上有以下特点。

  第一,选择相关的条件填入表格。题目里有桃、苹果、梨三种树的行数和每行棵数,在解决问题时,不把所有的已知条件都填入表格,只填需要的条件信息,这是根据解决问题的需要筛选信息的活动。在例题的表格里,上面一行已经填了桃树的行数和每行棵数,下面一行填什么由学生思考。试一试只提供一张空白的表格,里面填哪两种树的行数和每行棵数都由学生决定。要充分发挥问题对思路的导向作用,引导学生仔细体会桃树和梨树一共有多少棵苹果树比桃树多多少棵这两个问题。只要明白了问题的意思,列表整理不会有困难。

  第二,利用表格、紧扣问题,设计解题步骤。在列表整理后,教材安排学生想一想要先算什么,理清解题思路。仍然可以从两个角度去想:根据表格里的条件可以求出什么,解决这个问题需要知道什么。两条思路的交叉点就是解题步骤。

  2、让学生在解决实际问题的过程中,逐渐养成整理信息的习惯。

  整理信息是解决问题的策略,整理的方法和形式是多样的,列表整理只是其中的一种。教材选择列表整理是它易于操作,适宜学生运用。学生对填表的态度有积极与消极之分,积极的态度表现为对填表有热情,体验到填表整理对形成解题思路的作用,具有自觉进行整理的习惯。消极的态度则把填表看做负担,理解为教材和老师的规定,是被迫进行的。教材力求让学生体会到整理信息的意义,并转化成内在的需要,真正形成解决问题的策略。

  (1) 从有形地整理到无形地整理。

  两道例题里都提供了表格,只要把条件或问题填入表格就进行了信息的整理。教材预设表格,能突出策略的教学,便于落实。在两次想想做做里都有不提供表格的题目,让学生独立解答。没有提供表格也要整理信息,是鼓励整理的形式多样化,使整理信息的活动具有个性;是引导整理活动从有形向无形发展,从题目的安排变为自我要求。为了完成从提供表格到不提供表格的过渡,教学时应注意三点。

  第一,让每个学生都有独自填表整理的机会,学会填表整理的方法。第65页例题里的表格已经填好,所以想想做做前两题都有空白的表格让学生填写。第68页例题的前一张表格留出一半给学生填,试一试的'表格全部让学生填。教材留出这么多填表机会,给课堂教学指导学生学会填表整理创造了条件。

  第二,让每个学生都体会填表对解题的作用。填表不单整理了条件和问题,还能理出解题的思路、步骤和方法。如果不经过填表整理的活动,数量关系就不会这么清晰,解题也不会这么顺利。

  第三,允许学生从自己的实际出发,选用适宜的整理形式。在解答想想做做里没有提供表格的题目时,仍然要把整理信息作为主要的教学内容。整理的形式不要求全体学生都相同,可由学生自主选择。可以把题目里的条件和问题看在眼里,想在脑里,在无形的思维活动中整理;可以在题目上勾勾画画进行整理;也可以通过摘录信息或列表进行整理。下面是勾画整理的实例,它是有形地列表整理到无形整理的中介。

  星光新村新盖的3幢楼房共住了42户。照这样计算,这个新村25幢这样的楼房共住了多少户?

  学生选择整理方法一般都从自己的实际能力出发,教学要尊重他们的选择,保障大多数学生都有完成整理信息的时间。要组织各种整理形式的交流,逐渐提升整理信息的水平,逐渐进入无形整理的境界。

  (2) 解决新颖的问题。

  问题的新颖性与策略的形成正相关。策略往往在解决新颖的问题时体现其价值,并在创造性地解决问题的活动中得到锻炼和发展。如果解决实际问题的练习总是局限在已经教过的、已经认识的那些问题上,那么只是进行技能操练,没有培养策略。为此,教材在教学归一问题的基础上带出归总问题,在教学比较容易的三步计算问题时安排少量稍难些的三步计算问题。这些归总问题、稍难些的三步计算问题都不编排例题,在想想做做里让学生应用策略独立解答。

  发展解决问题的策略是新课程对数学教学提出的新课题,让学生主动解决一些新颖的问题是数学教学的一项突破。为此,教学中应做到两点。

  第一,改变例题的教学观念。例题教给学生思想方法,这种思想方法不但解决了例题,还能解决与例题相似、甚至不同的问题。列表整理是解决问题的基本策略,解决的问题包括归一问题、稍容易的三步计算问题,还涵盖了归总问题、稍难些的三步计算问题以及其他的实际问题。只有在例题的教学中突出整理条件与问题,学生体验了这个思想方法,内化成解决问题的策略,才可能举一反三应用这种策略。

  第二,教学新颖的问题,既要放手让学生独立解答,又要给予必要的指导。第一次出现归总问题和稍难些的三步计算问题,教材都为学生设计了可以填写的表格。一方面引导学生应用已经学到的思想方法,继续培养整理信息的能力。另一方面适当降低整理信息的操作难度,学生有现成的表格可填。教学要注意适度地放和适当地扶。如第67页第2题的表格一定要让学生填,考虑到填表可能发生的问题,可以先带领学生到情境图里寻找数学信息。有哪几种球,哪些球的单价已知,哪些球的单价未知;老师带的钱正好够买什么球,可以买几个。这样,学生填表的困难会少些,通过列表整理的思路会顺畅些。又如第69页第3题,填表以后让学生说说对栽120棵树的理解,明白它的一部分是四年级栽的,另一部分是五年级栽的。这样,学生就捕捉到这个题目的最主要的数量关系。

  最后还要指出一点,列表整理是解决实际问题的基本策略,解决每一个问题都从整理题目里的条件和问题入手。本单元教学列表整理以后,不能说所有的问题学生都能解答了。应以解答归一问题、归总问题、较容易的三步计算问题为主,一些稍难的实际问题以后会安排教学。