《因数与倍数》数学教学反思 篇1
教学《倍数与因数》,这是一个非常枯燥的课题,但我巧妙地运用课文中的情景图与学生的生活实际联系,通过水果店各种水果的单价所显示的数进行分类,得出自然数、整数、小数、分数和负数,使学生体会生活中各种不同的数。为了让学生理解倍数与因数的含意,教学过程中,我立足体现一个“实”字,让学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。
在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都很感兴趣,说得很努力。原来,数学也很有趣……
《因数与倍数》数学教学反思 篇2
我执教的四年级数学拓展平台《因数和倍数》一节,这一内容,学生初次接触。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。首先以贴画为素材,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
这节课另一个给我感触最深的是:在引导学生找一个数的因数和倍数。我借助学生开课摆的12个小正方形,写出的三个乘法算式。首先引导学生找12的因数,我给学生充分的自主探究时间,让学生经历知识的形成过程,自主构建新知。出乎意料的是学生竟然用口诀,乘法和除法等等方法找出12的因数,找到两个因数非常接近,紧接着师生互动,交流讨论出12的所有因数。学生在轻松愉快中掌握了找一个数的所有因数的方法。再找9的13的因数,一环扣一环,总结归纳再能不能找出这些数的因数了?学生说不能,从而引出因数的个数是有限的。及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师及时跟上个性化的语言评价,激活学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己学习找一个数的倍数。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
《因数与倍数》数学教学反思 篇3
《因数和倍数》是人教版小学数学五年级下册第二单元的起始课,也是一节重要的数学概念课,所涉及的知识点较多,内容较为抽象,对于学生来说是比较难掌握的内容,在这样的前提下,如何能充分发挥学生的主体作用,让他们自主探索,自己感悟概念的内涵,并灵活地运用“先学后教”的模式,达到课堂的高效,在课堂中我做了以下的尝试。
一、领会意图,做到用教材教。
我觉得作为一名教师,重要的是领会教材的编写意图,灵活的运用教材,让每个细节都能发挥它应有的作用。如教材是利用了一个简单的实物图(2行飞机,每行6架;3行飞机,每行4架)引出了要研究的两个乘法算式“2×6=12,3×4=12”直接给出了“谁是谁的因数,谁是谁的倍数”的概念。这样做目的有二:一是渗透了从乘法算式中找因数倍数的方法,二是利用数与数之间的关系明确的看到因数倍数这种相互依存的关系。
但这样做仍不够开放,我是这样做的:课始并没有出示主题图,直接提出问题:“如果有12架飞机,你可以怎样去排列?”学生除了能想到图中的两种排法还能得到第三种,这样做是用开放的问题做为诱因,使学生得到“2×6=12、3×4=12、1×12=12”三个算式,而这些算式不仅能够清晰地体现因数倍数间的关系,更是后面“如何求一个数的因数”的方法的渗透和引导。看来灵活的运用教材,深放领会意图,才能使教学更为轻松、高效!
二、模式运用,做到灵活自然。
模式是一种思想或是引子,面对不同的课型,我们应该大胆尝试,不断的积累经验,使模式不再是僵化的,机械的。只要是能促进学生能力形成的东西,我们不能因为要运用模式而把它们淡化,反之,应该想方设法,在不知不觉中体现出来。
如本课中例1是“求18的因数有哪些”,例2是“求2的倍数有哪些”教材的设计已经能够体现学生自主探索知识的轨迹,那我们何不通过一句简短的过渡语让学生进入到下面的学习中呢?而没有必要非要设计出两个“自学指导”让学生按步就搬地往下走,而且让学生对比着去感受一个数“因数和倍数”的求法的不同,比先学例1再学例2的方式更容易让学生发现不同,得到方法,加深对知识的理解,同时也更加体现了学生的自主性,这才是模式的真正目的所在。内涵比形式更重要,发现比引导更有效!
《因数与倍数》数学教学反思 篇4
这段时间我参加省领雁工程数学骨干班学习活动挂职锻炼活动。今天是上课实践,我执教了《因数和倍数》在完成教学后总的来说自己还是比较满意的,但是在与指导师进行交流和自己对本课进行了反思后,发觉自己有几个地方处理得不到位,可以进行改进:
1、课前我认为此课的知识点较多,因此认识倍数和因数、找因数作为本课的主要知识点,找倍数则不放进去,而是放到下一课。但是根据课堂教学的情况来看,完全可以把找倍数这个知识点放进去,因为找倍数这个知识点不难只要5、6分钟处理,而且缺少了这一块内容课堂感觉不太完整。因此第二次试教时我将把这个环节放进去。
2、课堂引入环节,我采用了纯数学的引入方式,但是这样的引入不够好,其实可以采用张齐华老师曾经使用过的图形结合的引入:用12个小正方形搭实心长方形,这样的引入不仅可以图形结合地引入因数倍数,而且可以比较自然地让学生感知限制因数倍数研究范围为非0自然数这个知识点。下次上课我将用张老师的引入方式引入,学习比较好的课例中的好的环节。
3、在课堂中有一个环节我让学生同桌互相写乘法算式说因数倍数关系,有一个学生写了1×1=1,我只是简单地反馈这个算式比较简单好说,其实这是一个比较特殊的算式,因为1很特殊,他的因数和倍数都只有一个,就是他本身。我应该要抓住学生的这个生成,进行引导让他们观察这些数的因数个数,从而为以后教学质数和合数进行潜在渗透。
4、在这节课中我例题与例题之间比较离散,练习不紧密,导致教学时例题与例题之间跳跃性比较强,听起来比较散,不集中,主线不分明。因此我在下一个例题设计时把这些知识点整合整合在一个材料中,增强连续性。
总的来说,今天教学后我感觉本课还有很多课挖掘的地方,我在下一节课中将针对这些地方进行改进,使课堂效率更高
《因数与倍数》数学教学反思 篇5
《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。这一单元是本册教材的重点和难点,说它重要是因为它将是第四单元的基础,说它是因为概念太多——因数、倍数、偶数、奇数、质数、合数再加上2的、3的、5的、2和5、2、3和5的倍数的特征等,让学生应接不暇,要将这些抽象的知识教给学生,很难联系生活实际,只有举例说明,归纳总结、得出结论,有意识地培养学生的抽象概念能力。
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
(3)新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基础上再引出因数和倍数的概念。实际上,由于乘除法本身就存在着互逆关系,用乘法算式(如b=na)同样可以表示整除的含义。因此,新教材中没有用数学化的语言给“整除”下定义,而是利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,学生不必通过12÷2=6得出12能被2整除,进而2是12的因数,12是2的倍数。再通过12÷6=2得出12能被6整除,进而6是12的因数,12是6的倍数,大大简化了叙述和记忆的过程。
自认为今天早上第二节课自己上得挺不错,至少挺顺。从出示乘法算式,如2*6=12,认知谁是谁的因数,谁是谁的倍数,然后仿例说说3*4=12,谁是谁的因数,谁是谁的倍数,再找12的其他因数有哪些?学生自主举例说说因数和倍数。提示注意点:讨论的是在整数的范围内,不包括0。
按理说因数和倍数的概念差不多了,会模仿说,会举例。但当我出示36和9,说说谁是谁的因数却不会做。我却愣了。这很难吗?虽然教参中说因数和倍数是建立在整除的基础上,但对于新教材却不再提起整除这一概念。那我该怎么讲呢?
只能讲36可以写成9*几的形式,再看着乘法算式说谁是谁的因数。虽然学生有点明白了。但我说觉得有点绕。
课后反思能否在认知因数和倍数时,再添个环节如:3*4=12还可以写成除法算式,12/3=4
12/4=3,我们也可以说12是3和4的倍数,3和4是12的因数。从中你对因数和倍数有什么自己的理解,通过让学生说,逐步体会到,谁是谁的因数中的这两个数是成倍数关系的;且一般情况下这两个数中大数是小数的倍数,小数是大数的因数;被除数是除数和商的倍数,除数和商是被除数的因数。如果能这样深化一下,遇到刚才诸如此类的题目,学生的判断方法可能更直接一些,只要这两个数除一除商是整数的,那么小数是大数的因数,大数就是小数的倍数,可能不会这么淆。
所以通过这堂课我体会到,教学不能光是按着教材来教,还是要通过自己的深加工,但是有时也只有在上过课以后从学生作业当中,才会体会到自己在教学中的成功与失败之处,也才会体会到什么地方是自己该深入挖掘的地方。
《因数与倍数》数学教学反思 篇6
《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式2×6=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念——适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
《因数与倍数》数学教学反思 篇7
《因数和倍数》是一节概念课。教学时我首先以拼图比赛为素材,让学生动手操作快速把12个小正方形摆出一个长方形,再让学生用乘法算式表示出所摆的长方形,在交流中得到三种不同的摆法和三种不同的乘法算式。借助乘法算式引出因数和倍数的意义,使学生初步建立了“因数与倍数”的概念。 这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据1×12=12,2×6=12,3×4=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,我紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
最后引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。
由于本节课的容量比较大,练习题设计综合性比较强,学生学得并不轻松,还存在一小部分学生没有很好地理解因数与倍数的关系。今后,应努力改进教学手段,提高学困生的学习效率。
《因数与倍数》数学教学反思 篇8
教学片断:
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
反思:
陶老师从摆小正方形入手,提出“每排摆了几个?”“摆了几排?”这两个问题,引导学生用乘法算式把摆法表示出来,再让学生猜一猜“可能是怎么摆的”,学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。接着结合具体的乘法算式介绍倍数和因数,并让学生根据另外两道乘法算式说说谁是谁的倍数,谁是谁的因数。再通过除法算式让学生说说谁是谁的倍数,谁是谁的因数。最后让学生从五个数中任选两个数说说谁是谁的倍数,谁是谁的因数,这样层层深入,学生对倍数和因数的感受更加深刻。<
《因数与倍数》数学教学反思 篇9
《倍数和因数》这一章是人教版五年级下册的内容。由于这一单元概念较多,学生要掌握的知识较多,所以掌握起来较难。我上的这节复习课分以下四部分。
1、先从自然数入手,由自然数的概念让学生总结自然数的个数是无限的,最小的自然数是0,没有最大的自然数。又根据生活实际试着让学生把自然数分成奇数和偶数。点名说出什么数是奇数,什么数是偶数,是根据什么分的,这样有一种水到渠成的感觉。
2、由偶数都是2的倍数,复习2的倍数的特征,5的倍数的特征,3的倍数的特征。学生边复习老师边板书,由于大家共同协作,很快找出一个数的最小倍数是它本身,没有最大的倍数。然后总结同时能被2、3整除的数就是6的倍数,引出倍数和因数的意义。让学生随便说一个算式,说明谁是谁的倍数,谁是谁的因数”,学生列举乘法或除法算式,准确表达倍数与因数的关系,加深了学生对倍数与因数相互依存关系的理解和认识。
3、随便给出一个数找出它的所有因数,得出一个数最小的因数是1,最大的因数是它身。根据因数的个数把自然数分成质数、合数和1。复习什么是质数,什么是合数。最小的质数是几,最小的合数是几。20以内的质数。为什么1既不是质数也不是合数。这是根据什么分类的呢?任意给出一个数判断是质数还是合数,若是合数让学生分解质因数。先说分解质因数的方法,然后点名学生板演,教师巡视。指出错误。
4、带领学生一起做练习,让学生边做边说思路。这节课比较好的地方是条理清晰、内容全面;练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性、趣味性。
不足之处是我缺乏个性化的语言评价激活学生的情感,以后需多努力。
《因数与倍数》数学教学反思 篇10
总的感觉是上好一堂课不容易。当确定好内容后,我和吴艳、顾志成三人各自备课,第二天放学后化了整整一个半小时讨论教案,后又几经修改,但总感到时间来不及。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,学起来比较枯燥。如何使学生通过四十分钟愉快轻松的学习掌握这乏味的概念性内容,如何开头,各部分之间怎样衔接,每一个知识点采取何种形式呈现、展开,重点如何突出,难点如何突破,那几天这许多问题始终盘绕在脑海中,课上下来根据学生的参与情况,掌握程度可以说达到了教学目标。我觉得整个课堂教学注意了以下几点:
1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。
试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用学生乔雨雷、乔风光兄弟间的关系呀,于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
2、注意引导学生进行有效的合作学习。
动手实践、自主探索、合作交流是新课程倡导的学习方式,公开课不管上的什么内容,不管有没有必要往往都要叫学生讨论,看起来热热闹闹,其实有多少学生真正参与了讨论。往往是一组中的优等生把答案说出,其他学生洗耳恭听。当3、2、5的倍数写出来后,我问:“整体观察这几个数的倍数,你认为一个数的倍数有什么特点?”首先问题有讨论的价值与必要性,其次当问题提出后我先让学生独立思考,看到学生陆续举手时,再组织学生讨论交流,完善自己的想法。(其实这是我一贯的做法,必须在每个学生独立思考的基础上进行合作学习。)
3、内容环环相扣、过度自然流畅。
从生活中的相互依存关系迁移到数学中的倍数因数,从而揭示课题,引出谁是谁的倍数,谁是谁的因数,到找一个数的倍数或因数,归纳找的方法。整个教学过程环环紧扣、一气呵成,通达顺畅。
4、练习设计由易到难,由浅入深,既巩固了新知,又发展了思维。
“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。让学生判断自己的学号数是哪些数的倍数,老师手里拿了2、3、5几张数字卡片,老师出示卡片,如果学生的学号数是老师出示卡片的倍数就可以站起来。最后留下了学号是1、7、11、13、17、19、23、29、31、37、41、43、47的学生,让学生想办法如果他们也要站起来,老师出示的卡片上应是几?学生面对问题积极思考,享受了数学思维的快乐。
疑问:一开始的摆12个小正方形拼成长方形,得出三个积是12的乘法算式,我想这里的操作可否省去?一方面用去时间较多,对教学内容关系不大,如果说是培养操作能力也不是在这个时候。另一方面这堂课练习时间比较少,挤出的时间可用于练习。
我想如果我们每堂课都能精心设计的话,对学生对我们教师都会有很大的提高。