欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 教学设计

圆锥的体积教学设计精华7篇

时间:2023-11-02 08:26:43 教学设计

  【前言】下面是热心会员“a3”整理的圆锥的体积教学设计精华7篇,以供参考。

圆锥的体积教学设计

圆锥的体积教学设计 篇1

  教学内容:教科书第52页练习十二的第69题。

  教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。

  教学过程:

  一、复习

  1.圆锥的体积公式是什么?

  2.填空。

  (1)一个圆锥的体积是与它等底等高的圆柱体积的

  (2)圆柱的体积相当于和它等底等高的圆锥体积的( )倍。

  (3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的 ,相当 于圆锥的( )倍。

  二、课堂练习

  1.做练习十二的第6题。

  教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:

  让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板

  测量出圆锥的高,这样就可以求出圆锥的体积。

  2.做练习十二的第7题。

  读题后,教师可以先后提问:

  这道题已知什么?求什么?

  要求这堆沙的重量,应该先求什么?怎样求?

  指名学生回答后,让学生做在练习本上,做完后集体订正。

  3.做练习十二的第8题。

  读题后,教师可提出以下问题:

  这道题要求的是什么?

  要求这段钢材重多少千克,应该先求什么?怎样求?

  能直接利用题目中的数值进行计算吗?为什么?

  题目中的单位不统一,应该怎样统一?

  分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。

  4.做练习十二的第9题。

  读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

  要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

  让学生独立做在练习本上,做完后集体订正。

  三、选做题

  让学有余力的学生做练习十二的第10*、11*、12*题。

  1.练习十二的第10*题。

  教师:这道题要求圆锥的`体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

  引导学生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圆锥的体积公式就可以求出其体积。

  2.练习十二的第11*题。

  这是一道有关圆柱、圆锥体积的比例应用题。

  可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

  设圆柱的高为x厘米。

  =

  X=9。6

  (注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)

  3.练习十二的第12题。

  这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

圆锥的体积教学设计 篇2

  教学目标

  1、通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

  2、通过学生动脑、动手,培养学生的思维能力和空间想象能力。

  教学重点和难点

  圆锥体体积公式的推导。

  教学过程设计

  (一)复习准备

  我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。

  这是什么体?(圆锥体)

  (板书:圆锥)

  上节课我们已经认识了圆锥体,这里有几个画好的几何形体。

  (出示幻灯)

  一起说,几号图形是圆锥体?(2号)

  (指着圆锥体的底面)这部分是圆锥体的什么?(底面)

  (指着顶点)这呢?

  哪是圆锥体的高?(指名回答。)

  (用幻灯出示几个图形。)

  在这几个圆锥体中,几号线段是圆锥体的高,就举几号卡片。

  (学生举卡片反馈)

  你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)

  那么这个圆锥体的高在哪呢?(在幻灯上打出圆锥体的高。)

  看来,同学们对于圆锥体的特征掌握得很好,这节课我们就重点研究圆锥的体积。

  (板书,在“圆锥”二字的后面写“的体积”。)

  (复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)

  (二)学习新课

  (老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?

  (再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)

  看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。

  为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底等高)

  既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)

  为什么?(因为圆锥体的体积小)

  (把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。

  (学生分组做实验。)

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?

  (学生发言。)

  同学们得出这个结论非常重要,其他组也是这样的吗?

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (不是)

  是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?

  (因为是等底等高的圆柱体和圆锥体。)

  呢?(在等底等高的情况下。)

  (老师在体积公式与“等底等高”四个字上连线。)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。

  (老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)

  (三)巩固反馈

  1、口答。

  填空:

  2、板书例题。

  例一个圆锥体,它的底面积10cm,高6cm,它的体积是多少?

  (指名回答,老师板书。)

  =20(cm)

  答:它的体积是20cm。

  3、练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  4、我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。

  (幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。

  (学生在小黑板上只写结果,举黑板反馈。)

  你们求出这个圆锥体的体积是314cm。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。

  5、选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。

  (1)一个圆锥体的体积是a(dm),和它等底等高的圆柱体体积是()(dm)。

  ②3a(dm)

  ③a3(dm)

  (举卡片反馈,订正。)

  (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm,圆锥体体积是()cm。

  (学生举卡片反馈,订正。)

  6、刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)

  为什么?(因为不知道底面积和高。)

  需要测量什么?(底面半径和高。)

  怎么测量?(小组讨论。)

  (指名发言)

  今天回家后,把你们测量的数据写在本子上,再计算出体积。

  这节课我们学了什么知识?

  出思考题:

  现在我们比一比谁的空间想象能力强。

  看看我们的.教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

  指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。

  (四)指导看书,布置作业

  (略)

  课堂教学设计说明

  本节课的主要特点有以下几点:

  一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程当中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。

  三是教学层次清楚,步步深入,重点突出。

  四是练习有坡度,形式多,教学反馈及时、准确、全面、有效。

圆锥的体积教学设计 篇3

  在评教评学中我所讲的内容是《圆锥的体积》,是学生在掌握了圆锥的认识和圆柱的体积的基础上进行的。教学时我先让学生回顾上一节学过的内容,再让学生大胆的猜想圆锥的体积公式。然后通过实验操作来发现圆锥与等底等高的`圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,或圆柱的体积是等底等高圆锥体积的3倍。

  并能运用这个关系计算圆锥的体积。本节课我重点让学生动手实验探究充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并记录下整个实验过程和发现的结果。在汇报时,由于准备的材料不同,范耀君同学的小组和郝子龙小组发生了争论,也是本课要解决的重点问题,我及时抓住这一个环节,引导学生得出必须在等底等高的条件下,从而推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。

  在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识。遗憾的是学生动手实验时,占据了较长的时间,以至练习的时间不多,没有达到充分的巩固。在以后的教学中要合理的安排和调控好课堂,使学生有充分发挥的空间。

圆锥的体积教学设计 篇4

  教学目的与要求:

(1)掌握锥体的等积定值,锥体的体积公式。

(2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。

  教学重点与难点:

  公式的推导过程,即"割补法"求体积。

  教学方法:

  发现式教学 教具:

  三棱柱模型、多媒体

  1、复习祖暅 原理及柱体的体积公式。

  2、等底面积等高的任意两个锥体的体积。

(类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。

  取任意两个锥体,设它们的底面积都是S,高都是h。

(创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:

∵S1/S=h12/h2,S2/S=h12/h2,

∴S1/S=S2/S,S1=S2。

  根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:

  定理,等底面积等高的两个锥体的.体积相等。

  3、三棱锥的体积公式

  为研究三棱锥的体积,可类比于初中三角形面积的求法。

  在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)

  而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。

  能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?

[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。

  也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?

(图形没有打印)

[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。

  三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。

∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh

  最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。

  定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。

  推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h

  4、锥体体积公式的应用。

  练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。

  练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。

  练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。

  5、课堂小结:1°割补法求三棱锥的思想。

  2°锥体的体积公式。

圆锥的体积教学设计 篇5

  教学内容:人教版九年义务教育小学数学教科书第十二册。

  整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。

  教学目的:

  1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。

  2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。

  3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。

[点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想——————验证”、“合作——————探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。

  教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。

  教学过程:

  一、创设情境导入新课。

  1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?

  2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)

  3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。

[点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]

  二、经历体验,探究新知

(一)渗透转化,帮助猜想

  1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。

  2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的`圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。

  3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……

[点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。]

(二)小组合作,实验验证。

  1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。

  2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。

  3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:

  概括板书:

  等底到高

  V圆柱=Sh V圆锥= 1/3sh

  4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:

  V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h

  5、教师组织学生独立完成书中例题后集体订正。

[点评:俗话说:“实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想——————验证”这一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。]

(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。

[点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]

  三、巩固新知,拓展应用。

  1、判断并说明理由

(1)圆柱体积是圆锥体积的3倍( )

(2)一个圆锥的高不变,底面积越大,体积越大。( )

(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )

  组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。

  2、求下列圆锥的体积(口答,只列式,不计算)

  s=4平方米,h=2平方米

  r=2分米,h=3分米

  d=6厘米,h=5厘米

  组织学生根据圆锥体积公式解答。

  3、实践与应用:

  学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?

  组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。

[点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的]

  四、课后总结,感情升华。

  这节课你有什么收获?你是怎样获得的?

[不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。]

[总评:

  1、钻研教材,创造性地使用教材。

  教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。

  2、注重数学思想方法的渗透。

  数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。

  3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。

  本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展

圆锥的体积教学设计 篇6

  教学目的:使学生初步掌握圆锥体积的计算公式。

  并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

  教学难点:圆锥的体积应用

  学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件

  教学时间:一课时

  教学过程:

  一、复习

  1、圆锥有什么特征?(课件出示)

  使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?

  先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  学生分组实验。

  汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 ×圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  1/3×19×12=76((立方厘米))

  答:这个零件体积是76立方厘米。

  做一做:课件出示,学生回答后,教师订正。

  1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?

  2、已知圆锥的底面半径r和高h,如何求体积V?

  3、已知圆锥的底面直径d和高h,如何求体积V?

  4、已知圆锥的底面周长C和高h,如何求体积V?

  5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?

  例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  判断:课件出示,学生回答后,教师订正。

  1、圆柱体的体积一定比圆锥体的体积大()

  2、圆锥的体积等于和它等底等高的圆柱体积的()。

  3、正方体、长方体、圆锥体的体积都等于底面积×高。()

  4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()

  四、教师小结。

  这节课我们学习了哪些知识?你还有什么问题吗?

  五、作业。课本练习

圆锥的体积教学设计 篇7

【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

(1)底面积是5平方厘米,高是6厘米。

(2)底面半径4分米,高是10分米。

(3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是v=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

(两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的`同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

(2)、求圆锥的体积(看图)

(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、填空。

(1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

  3、选择

(1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

(2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

  四、课堂总结

  师:今天,我们学习了什么内容?怎样计算圆锥的体积?

  对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

  五、布置作业

  课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

【教学重点】

  圆锥的体积计算。

【教学难点】

  圆锥的体积公式推导。

【教学关键】

  圆锥的体积是与它等底等高的圆柱体积的三分之一。

【教具准备】

  多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

【学具准备】

  空心圆锥和圆柱实物各一个,沙土若干。