欢迎来到61范文网!
您现在的位置:首页 > 教学教案 > 五年级教案

五年级下册数学教案(必备7篇)

时间:2023-08-27 12:23:38 五年级教案

  【导语】以下是会员“ziwenxiancangshan”整理的五年级下册数学教案(必备7篇),供大家阅读。

五年级下册数学教案

小学数学五年级下册全册教案 篇1

  教学目标:

  1.结合具体活动情境,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。

  2.在实践与探究过程中,尝试用多种方法解决实际问题。

  教学重难点:

  探索不规则物体体积的方法,尝试用多种方法解决实际问题。

  教学活动:

  一、创设情况,引入新知

  1.出示石块

  问:如何测量石块的体积?什么是石块的体积?

  极书课题。

  2.以小组为单位,先讨论、制定测量方案。

  问:能直接用公式吗?不能怎么办?

  3.小组派代表介绍测量方案。

  学生观察石块

  想一想,如何测量石块的体积。

  学生分组讨论,制定测量方案

  学生的测量方案可能有:

  方案一:取一个正方体容器,里面放一定的水,量出水面的高度后把石块沉入水中,再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的水的体积,也就是石块的体积了,也可以分别计算放入石块前的水的体积与放入石块后的总体积之差。

  方案二:是将石块放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出溢出的水的.体积,就是石块的体积。

  方案三:可以用细沙代替水,方法类似于方法一、方法二。

  设计意图:创设情景,激发学生学习新知的兴趣。引导学生小组合作,制定测量方案。

  引导学生探索与体会测量不规则物体的体积的方法。

  二、进行实验

  让学生按各自小组制定的方案小组合作进行测算。

  小组代表领取所需测量工具,学生小组合作动手测量,并且列式计算

  设计意图:通过实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种。

  三、试一试

  1.在一个正方体容器里,测量一个苹果的体积。

  2.测量一粒黄豆的体积。

  学生小组合作进行测算

  3.小结。

  师:通过实验,这节课你有什么收获?

  请几名学生说说自己的收获

  设计意图:让学生再一次运用在操索活动中得到的测量方法去测量其它不规则物体的体积。

  四、数学万花筒

  课件出示阿基米德的洗浴故事

  学生听老师讲述阿基米德的洗浴故事

小学数学五年级下册全册教案 篇2

  教学内容:

  教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

  教学目标:

  1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

  2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

  3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

  教学过程:

  一、练习与应用

  1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

  2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

  二、探索与实践

  1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

  2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

  三、与反思

  在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

五年级下册数学教案 篇3

  【教学内容】

  质数和合数(课本第xx页例x及第xx页练习)。

  【教学目标】

  1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2、知道100以内的质数,熟悉20以内的质数。

  3、培养学生自主探索、独立思考、合作交流的能力。

  4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  【教学重难点】

  重点:理解质数、合数的意义。

  难点:掌握判断质数与合数的方法。

  【教学过程】

  一、复习导入

  1、什么叫因数?

  2、自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  二、新课讲授

  1、学习质数、合数的概念。

  (1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数的概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

  2、教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  9396

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:

  合数:

  3、出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。首先排除掉2的倍数,再排除掉3的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

  ③注意1既不是质数,也不是合数。

  100以内质数表。

  三、课堂作业

  完成教材第xx页练习的第x题。

  四、课堂小结

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  【板书设计】

  质数和合数:

  一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

  【教学反思】

  教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

小学五年级数学下册教案 篇4

  设计说明

  1.加强动手操作训练,促进学生的思维。

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

  2.自主探索,体会优化思想。

  本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。

  课前准备

  教师准备 PPT课件 天平 药瓶

  学生准备 天平

  教学过程

  情境导入,激发兴趣

  1.你们每天上学通常要走哪条路?为什么要选择这条路?

  (生自主回答)

  2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

  师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

  师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

  设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的`具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

  实践操作,自主探究

  1.提出探究要求。

  师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

  2.动手操作,汇报方法。

  学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

  3.总结归纳记录的方法。

  组织学生把用天平称的过程用图表记录下来。

  合作交流,研究探讨

  师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

  理解题意,动手操作。

  (1)先让学生读题,说说“至少”的含义。

  (2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

五年级下册数学教案 篇5

  教学目标

  1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

  2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

  3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

  教学内容分析:

  小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

  重难点

  重点:

  知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

  难点:

  运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

  教学过程

  活动1【导入】

  一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

  师:同学们学习过整数吗?如果用这张红色的.纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

  师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

  师:这段不足1的长度怎样表示呢?(用分数表示)

  在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

  老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

  预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

  预设2:红色纸条对折,不足1的部分是红色纸条的

  预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

  我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

  在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

  活动2【讲授】

  二、分物中体会单位“1”可以是多个物体

  师:刚才我们找到了,生活中其他的地方有没有呢。

  大米

  1000克

  拿出小片子,请你分别表示出它们的。

  我们表示的都是,可是为什么对应的数量却都不相同呢?

  回顾一下找的过程,你对分数又有了哪些新的体会?

  师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

  活动3【讲授】

  三、分物中认识分数单位,深入体会分数的意义。

  师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

  合作建议:

  独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

  小组讨论:在小组内说一说你找到的分数所表示的意义。

  预设:

  观察这两个分数你有什么发现吗?

  相同点:都是把6块糖平均分成6份

  不同点:取的份数不同

  联系:2个是

  师:你会表示吗?

  师:我们发现有几个就是六分之几。

  师:你会表示吗?

  师:那么有几个就是三分之几。

  像、这样的表示一份的分数就叫做分数单位。而像、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

  师:有些同学还找到了一样的分数,对吗?

  师:表示了这么多分数,谁能来说说分数的意义。

  活动4【导入】

  四、巩固练习

  1、填一填

  2、猜一猜

  师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

  师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

  师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

  师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

  出示

  师:你知道这是几分之几吗?

  有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

新课标小学五年级下册数学《质数和合数》教案 篇6

  教学内容: 人教版小学五年级数学质数和合数

  教学目标: 1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数 的个数进行分类.

  2.培养学生细心观察全面概括.准确判断.自主探索、独立思考、合作交流的能力。

  教学重点: 能准确判断一个数是质数还是合数.

  教学难点: 找出100以内的质数.

  教学过程:

  一、复习导入(加深前面知识的理解,为新知作铺垫)

  下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数.

  3和15 4和24 49和7 91和13

  指名回答。

  二、小组合作学习质数和合数的的概念。

  全班分两组探讨并写出1~20各数的因数。

  1、观察各数因数的个数的特点。

  2、板前填写师出示的表格。

  只有一个因数

  只有1和它本身两个因数

  除了1和它本身还有别的因数

  3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这们的数叫做合数。(板书:质数和合数)

  4、举例。

  你能举一些质数的例子吗?

  你能举一些合数的例子吗?

  练习:最小的质数是谁?最小的合数是谁?质数有多少个因数?合数至少有多少个因数?

  5。探究“1”是质数还是合数。

  刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了,)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)

  引导学生明确:1既不是质数也不是合数。

  练习:自然数中除了质数就是合数吗?

  三、给自然数分类。

  1、想一想

  师:按照是不是2的倍数把自然数分为奇数和偶数。按照因数个数的多少,把非零自然数分为哪几类?

  生:质数,合数,1。

  2、说一说。

  既然知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

  引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数,如果有两个以上因数,这个数就是合数。

  四、师生学习教材24页的例1。

  老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

  1、师引导学生找出30以内的质数。

  提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1,)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)

  (特殊记忆20以内的质数,因为它常用。)

  2。小组探究100以内的质数。

  3。汇报100以内的质数。师生共同整理100以内的质数表。

  4。应用100以内质数表:

  练习:(1)有的奇数都是质数吗?(2)所有的偶数都是合数吗?

  五、思维训练。

  有两个质数,它们的和是小于100的奇数,并且是17的倍数。求这两个数。

  六、课堂小结。

  这节课你学会了什么?(质数和合数)什么叫质数?(一个数只有1和它本身两个因数,这样的数叫做质数)什么叫合数?(一个数除了1和它本身外还有别的因数的,这样的数叫做合数。)你会判断质数和合数吗?判断的关键是什么?(看这个数因数的个数。)

  反思:在设计质数与合数这一节课时,我用“细心观察、全面概括、准确判断”这一主线贯穿全课。并在每个新知的后面都设计了一个小练习。以便及时巩固和加深对新知的理解和记忆。最后的思维训练,是给本节课学得很好的学生一个思维的提升。小结又针对全班学生做了新知的概括。

  在学生找20以内各数的因数时,我应该注重探索,体现自主。就是放手让学生自己想办法以最短的时间找出各数因数,并在我的引导下按因数的个数给各数分类,最终得出质数和合数的概念。在以后的学习中我应当多多提倡自主探索性学习,注重“学习过程”,而不是急于看到结果。让学生成为自主自动的思想家,在学习新知识时根据已积累的知识经验有所选择、判断、解释、运用,从而有所发现、有所创造。

五年级下册数学《约数和倍数的意义》教案 篇7

  教学目标

  1、掌握整除、约数、倍数的概念.

  2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

  教学重点

  1、建立整除、约数、倍数的概念.

  2、理解约数、倍数相互依存的关系.

  3、应用概念正确作出判断.

  教学难点

  理解约数、倍数相互依存的关系.

  教学步骤

  一、铺垫孕伏(课件演示:数的整除下载)

  1、口算

  6÷515÷323÷7

  ÷÷231÷3

  2、观察算式和结果并将算式分类.

  除尽

  除不尽

  6÷5=15÷3=15

  ÷=424÷2=12

  23÷7=3......2

  31÷3=10......1

  3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

  4、寻找具有整除关系的算式.

  板书:15÷3=515能被3整除

  5、分类除尽

  除不尽

  不能整除

  整除

  6÷5=

  ÷=4

  15÷3=15

  24÷2=12

  23÷7=3......2

  31÷3=10......1

  二、探究新知

  (一)进一步理解”整除“的意义.

  1、整除所需的条件.

  (1)分析:24能被2整除,15能被3整除;

  23不能被7整除,31不能被3整除;(商有余数)

  6不能被5整除;(商是小数)

  不能被整除;(被除数和除数都是小数)

  (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

  a、被除数和除数(0除外)都是整数;

  b、商是整数;

  c、商后没有余数.

  板书:整数整数整数(没有余数)

  15÷3=5

  2、用字母表示相除的两个数,理解整除的意义.

  (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

  (板书:a÷b)

  学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

  (板书:a能被b整除)

  (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

  学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

  3、反馈练习.

  (1)下面的数,哪一组的第一个数能被第二个数整除?

  29和336和12和

  (2)判断下面的说法是否正确,并说明理由.

  能被12整除.

  能被3整除.

  能被整除.

  能被5整除.

  能整除29.

  4、”整除“与”除尽“的联系和区别.

  讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

  (举例说明)

  (二)约数、倍数的意义

  1、类推约数、倍数的意义.

  (1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

  (2)学生口述:

  24能被2整除,我们就说,24是2的倍数,2是24的约数.

  10能被5整除,我们就说,10是5的倍数,5是10的约数.

  a能被b整除,我们就说a是b的倍数,b是a的约数.

  (3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

  (4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

  2、进一步理解约数、倍数的意义.

  (1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

  (2)约数和倍数相互依存的关系.

  学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

  (3)反馈练习:

  A、下面各组数中,有约数和倍数关系的有哪些?

  16和2140和2045和15

  33和64和2472和8

  B、判断下面说法是否正确.

  a、8是2的倍数,2是8的约数.

  b、6是倍数,3是约数.

  c、30是5的倍数.

  d、4是历的约数.

  e、5是约数.

  3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

  4、教学例2:12的约数有哪几个?

  (1)引导学生合作学习,讨论分析.

  (2)汇报、板书:

  12的约数有:1、2、3、4、6、12

  (3)练习:15的约数有哪几个?

  (4)学生明确:

  一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

  5、教学例3:2的倍数有哪些?

  (1)引导学生合作学习,讨论、分析.

  (2)汇报、板书:

  2的倍数有:2、4、6、8、10......

  (3)练习:2的倍数有哪些?

  (4)学生明确:

  一个数的倍数的个数是无限的,其中最小的倍数是它本身.

  三、全课小结

  这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

  (板书课题:约数和倍数的意义)

  四、随堂练习

  1、下面的说法对吗?说出理由.

  (1)因为36÷9=4,所以36是倍数,9是约数.

  (2)57是3的倍数.

  (3)1是1、2、3、4、5,...的约数.

  2、下面的数,哪些是60的约数,哪些是6的倍数?

  

  教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

  3、下面的说法对吗?为什么?

  (1)能被除尽.能被整除.

  是的倍数.是的9倍.

  (2)若a÷b=10,那么:

  a一定是b的倍数.a能被b整除.

  b可能是a的约数.a能被b除尽.

  五、布置作业

  1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

  

  2、在下面的圈里填上适当的数.

  六、板书设计

  约数和倍数的意义

  探究活动