欢迎来到61范文网!
您现在的位置:首页 > 综合范文

证明三角形全等【3篇】

时间:2023-10-07 13:09:18 综合范文

证明三角形全等 篇1

  课题:全等三角形的判定(一)

  教学目标

  1、知识目标:

  (1)熟记边角边公理的内容;

  (2)能应用边角边公理证明两个三角形全等.

  2、能力目标:

  (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

  (2) 通过观察几何图形,培养学生的识图能力.

  3、情感目标:

  (1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

  (2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.

  教学重点:学会运用公理证明两个三角形全等.

  教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.

  教学用具:直尺、微机

  教学方法:自学辅导式

  教学过程

  1、公理的发现

  (1)画图:(投影显示)

  教师点拨,学生边学边画图.

  (2)实验

  让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

  这里一定要让学生动手操作.

  (3)公理

  启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

  作用:是证明两个三角形全等的依据之一.

  应用格式:

  强调:

  1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.

  2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.

  3、平面几何中常要证明角相等和线段相等,其证明常用方法:

  证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.

  证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.

  2、公理的应用

  (1)讲解例1.学生分析完成,教师注重完成后的总结.

  分析:(设问程序)

  “SAS”的三个条件是什么?

  已知条件给出了几个?

  由图形可以得到几个条件?

  解:(略)

  (2)讲解例2

  投影例2:

  例2如图2,AE=CF,AD∥BC,AD=CB,

  求证:

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书.教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论.(3)讲解例3(投影)

  证明:(略)

  学生分析思路,写出证明过程.

  (投影展示学生的作业,教师点评)

  (4)讲解例4(投影)

  证明:(略)

  学生口述过程.投影展示证明过程.

  教师强调证明线段相等的几种常见方法.

  (5)讲解例5(投影)

  证明:(略)

  学生思考、分析、讨论,教师巡视,适当参与讨论.

  师生共同讨论后,让学生口述证明思路.

  教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.

  3、课堂小结:

  (1)判定三角形全等的方法:SAS

  (2)公理应用的书写格式

  (3)证明线段、角相等常见的方法有哪些?

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.

  6、布置作业

  a书面作业P56#6、7

  b上交作业P57B组1

  思考题:

  板书设计

  探究活动

  如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.

  提示: 利用三角形全等的判定(一)来说明.

证明三角形全等 篇2

  一、教学目标

  1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

  2.会进行简单的二次根式的除法运算;

  3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

  4、培养学生利用二次根式的除法公式进行化简与计算的能力;

  5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

  6、通过分母有理化的教学,渗透数学的简洁性、

  二、教学重点和难点

  1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

  2.难点:二次根式的除法与商的算术平方根的关系及应用.

  三、教学方法

  从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

  内容可引导学生自学,进行总结对比.

  四、教学手段

  利用投影仪.

  五、 教学过程

  (一)引入新课

  学生回忆及得算数平方根和性质:( a ≥0 ,b ≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

  学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

  (二)新课

  商的算术平方根.

  一般地,有( a ≥0 ,b >0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

  让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

  引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

  例1?化简:

  (1);(2);(3);

  解∶(1)

  (2)

  (3)

  说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数、

  例2?化简:

  (1);(2);

  解:(1)

  (2)

  让学生观察例题中分母的特点,然后提出,的问题怎样解决?

  再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决、

  学生讨论本节课所学内容,并进行小结.

  (三)小结

  1.商的算术平方根的性质.(注意公式成立的条件)

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  (四)练习

  1.化简:

  (1);(2);(3)、

  2.化简:

  (1);(2);(3)

  六、作业

  教材P.183习题11.3;A组1.

  七、 板书设计

证明三角形全等 篇3

【课前准备】

  1、定义:能够的两个三角形叫全等三角形。

  2、全等三角形的性质,全等三角形的判定方法见下表。

【例题讲解】

  一。挖掘“隐含条件”判全等

  如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

  1、如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。

  变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

  2、如图点D在AB上,点E在AC上,CD与BE相交于点O,

  且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

  3、如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

  变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

  二。添条件判全等

  1、如图,已知AD平分∠BAC,要使△ABD≌△ACD,

  根据“SAS”需要添加条件;

  根据“ASA”需要添加条件;

  根据“AAS”需要添加条件。

  2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是。

  三。熟练转化“间接条件”判全等

  1、如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

  为什么?

  2、如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

  3、“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。

  巩固练习:如图,在中,沿过点B的一条直线BE

  折叠,使点C恰好落在AB变的中点D处,则∠A的度数。

  4、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

【当堂反馈】

  1、(2006攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。所添条件为全等三角形是△≌△

  2、如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

  3、如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

  4、等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

(1)你能找到一对三角形的全等吗?并说明。

(2)BM,CN,MN之间有何关系?

  若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

【课后作业】

  1、如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是。

  要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是。

  2、。如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为,交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

(第3题)

(第4题)(第5题)(第6题)

  3、如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

  A.。2对对对对

  4、如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

  A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

  5、如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形。(保留作图痕迹,不要求写作法和证明)。

  6、如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

  7:如图11-9在△ABC中。⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

  试说明:①CE=BG;②CE⊥BG;

⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

  试说明:①CD=BE;②求CD和BE所成的锐角的度数。

【拓展延伸】

  如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由。

相关热搜