下面是网友“outr9160”整理的数学《平行四边形的面积》教案【合集13篇】,供大家参阅。
五年级上册数学《平行四边形的面积》教学设计 篇1
教学目标
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。
教学重点
掌握并会用公式计算平形四边形的面积。
教学难点
利用转化的数学思想和方法来探索平形四边形面积公式
教学教程:
一、创设情境,引出问题
同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)
那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)
平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)
今天我们就来研究平行四边形的面积公式
二、自主探究,动手操作
1、出示要求
把平行四边形的纸片剪一刀,然后拼成一个长方形。
2、学生动手操作,教师深入学生当中观察指导
3、汇报会交流。
生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。
生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。
师:要拼成一个长方形要怎么做才能办到呢?
生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。
师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。
4、议一议:平行四边形和拼出的长方形有什么关系呢?
生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。
生2:拼成的平行四边形的面积和长方形的面积想等。
师:那谁来总结一下平行四边形的面积公式。
生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)
5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。
生:S=a×h
过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。
三、巩固训练,拓展延伸
1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。
2、练一练第1题。指名读题,独立完成。
3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。
生:两个图形的面积相等,因为它们的底一样,高也相等。
生:平行四边形的面积等于底乘高,它们的底都是,高都是,所以面积相等。
师:也就是说,等底等高的平行四边形的面积想等。
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置作业
1、完成57页第2、3题
2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。
五年级数学《平行四边形的面积》优秀教学设计 篇2
教学内容:
人教版小学《数学》五年级上册,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:
探索并掌握平行四边形的面积计算公式。
教学难点
理解平行四边形的面积计算公式的推导过程。
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.
师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、图形转换
师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形
面积相等。)
四、总结全课,提高认识
回顾刚才我们的学习过程,你有什么收获?
教学反思:
本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。
1、前后呼应,浑然一体
利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。
把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。
2、合作探索,迁移创造
在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。
新课标数学《平行四边形的面积》优秀教学设计 篇3
教学目标:
1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法
2、能用平行四边形面积的计算方法解决简单的实际问题。
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:
推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学难点:
推导平行四边形面积公式
教学准备:
课件平行四边形硬纸片剪刀透明方格纸
教学过程:
一、情境激趣:
师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?
1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)
二、实验探究:
1、猜想
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验
1)独立自主探究:
师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:
(1)数格子(把表格带到前面说)
(2)剪拼
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)
是这样吗?师课件演示解说强调平移
师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底x高)
师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah
三、运用公式解决
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)
四、拓展练习
1、求下列图形的面积是多少?
底15厘米,高11厘米
(不仅准确计算出了结果,速度还很快,真不错。)
2、开放题:这是一张全国地图,有一个省的地形状像平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)
(能在实际问题的解决中恰当运用公式,了不起)
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)
五、全课小结:
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。
小学数学《平行四边形的面积》教学设计 篇4
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:理解公式并正确计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程。
教学方法:动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。
2、课外延伸思考题。
3、平行四边形转化为长方形的课件。
教学过程
一、创设情境,导入新课:
1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?
2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?
师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)
二、合作交流,探究新知
1、数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。(多种方法)
4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题。
(1)拼出的长方形和原来的平行四边形比,面积变了没有?
(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。
同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。
板书:
平行四边形面积= 底 × 高。
5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。
板书:S=a×h=ah=ah
6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
三、分层运用新知,逐步理解内化
1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)
3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)
4、 求下列平行四边形的面积 。
(2)判断对错:
师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)
(3) 观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)
生读题。
师:等底等高的平行四边形面积一定相等。
3. 思考题:你有几种方法求下面图形的面积?
四、总结全课,深化认识
通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?
今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。
小学五年级数学《平行四边形的面积》教案 篇5
教学内容:
人教版五年级上册教材P87~88例1及练习十九第1、2、3题。
教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。
学情分析:
学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。
教学目标:
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。
情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。
教学重点:
探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。
教学难点:
理解平行四边形的面积公式的推导过程。
教学方法:
迁移式、尝试、扶放式教学法
教学准备:
师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。
教学过程:
一、情境导入
1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)
2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3.提问:你会算它们的面积吗?
生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)
师:非常好!那平行四边形的面积怎样计算呢?
4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)
二、互动新授
(一)利用方格,初步探究。
1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?
生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。
出示教材第87页方格图以及平行四边形和长方形。
(引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)
2.同桌交流方法并完成教材87页的表格。
3.汇报想法。谁愿意说说你数的方法?
4.根据填表的结果进行讨论:你发现了什么?
生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。
(二)动手操作,深入探究
1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。
2.活动要求:
(1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。
(2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。
(3)尝试推导出平行四边形的面积公式。
比一比,那个小组做得又快又好。
3.汇报交流。
让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。
质疑:你们为什么要沿高剪呢?
生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。
4.课件演示剪拼过程。
师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。
运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。
5.引导学生小组思考讨论:
(1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
(2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?
(3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
7.教学用字母表示。
师:翻开教材自学第88页倒数第二自然段的内容。
师:你学到了什么?
生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)
8.课件演示,加深理解。
9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。
(三)应用公式,解决问题。
出示教材第88页例1.
学生读题,理解题意;独立完成;教师板书。
三、巩固新知,拓展提升。
1.计算出下面每个平行四边形的面积。
4.快速填表。
5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。
练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。
四、回顾总结
师:这节课你学会了什么,有哪些收获?
五、布置作业:教材第89页练习十九第1、2、3题。
板书
平行四边形的面积
长方形的面积=长×宽S=ah
↑ ↑ ↑ =6×4
平行四边的面积=底×高=24(m2)
S=ah
数学《平行四边形的面积》教案 篇6
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:
1、掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
教学难点:理解平行四边形面积公式的推导过程.
教具准备:课件,平行四边形的纸片。
学具准备:学习卡,每个学生准备一个平行四边形。
教学过程:
一、导入
1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。
2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。
板书课题:平行四边形的面积
二、平行四边形面积计算
1.用数方格的方法计算面积。
(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。
(2)独立完成。
(3)汇报结果。
(4)观察表格的数据,你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。
教师用课件或教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
4.出示例1。读题并理解题意。
三、巩固和应用
1、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
2、计算。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业:练习十五第1、2题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
《平行四边形的面积》教学反思
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
小学数学平行四边形的面积教学设计 篇7
教学内容:
人教版五年级上册教材P87~88例1及练习十九第1、2、3题。
教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。
学情分析:
学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。
教学目标:
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。
情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。
教学重点:
探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。
教学难点:
理解平行四边形的面积公式的推导过程。
教学方法:
迁移式、尝试、扶放式教学法。
教学准备:
师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。
教学过程:
一、情境导入
1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)
2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3.提问:你会算它们的面积吗?
生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)
师:非常好!那平行四边形的面积怎样计算呢?
4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)
二、互动新授
(一)利用方格,初步探究。
1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?
生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。
出示教材第87页方格图以及平行四边形和长方形。
(引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)
2.同桌交流方法并完成教材87页的表格。
3.汇报想法。谁愿意说说你数的方法?
4.根据填表的结果进行讨论:你发现了什么?
生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。
(二)动手操作,深入探究
1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。
2.活动要求:
(1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。
(2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。
(3)尝试推导出平行四边形的面积公式。
比一比,那个小组做得又快又好。
3.汇报交流。
让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。
质疑:你们为什么要沿高剪呢?
生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。
4.课件演示剪拼过程。
师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。
运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。
5.引导学生小组思考讨论:
(1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
(2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?
(3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
7.教学用字母表示。
师:翻开教材自学第88页倒数第二自然段的内容。
师:你学到了什么?
生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)
8.课件演示,加深理解。
9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。
(三)应用公式,解决问题。
出示教材第88页例1.
学生读题,理解题意;独立完成;教师板书。
三、巩固新知,拓展提升。
1.计算出下面每个平行四边形的面积。
4.快速填表。
5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。
练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。
四、回顾总结
师:这节课你学会了什么,有哪些收获?
五、布置作业:教材第89页练习十九第1、2、3题。
板书
平行四边形的面积
长方形的面积=长×宽S=ah
↑ ↑ ↑ =6×4
平行四边的面积=底×高=24(m2)
S=ah
数学《平行四边形的面积》教学设计 篇8
教学目标:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点和难点:
面积公式的推导。
教具、学具准备:
1. 教学课件。
2.剪两个底40厘米,高30厘米的平行四边形,供演示用。
3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。
教学过程:
一、复习
1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
二、新课
1.用数方格的方法求平行四边形的面积。
(1)指导学生数方格。
(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较平行四边形和长方形。
(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?
2.用实验的方法推导平行四边形面积公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手)
(2)教师示范把平行四边形转化成长方形的过程。
刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。
③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合(教师巡视指导。)
(3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。
(4)引导学生总结平行四边形面积的计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)
(5)教学用字母表示平行四边形的面积公式。
(6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。
3.应用总结出的面积公式计算平行四边形的面积。
(1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。
(3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。
三、巩固练习
做练习十六的第1题。
四、小结
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、作业;练习十六
第2题和第3题。
数学《平行四边形的面积》教案 篇9
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解平行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和平行四边形图片、剪刀、平行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)
出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究平行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
② 填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )
2、求平行四边形的面积必须知道平行四边形的( ) 和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各平行四边形的面积
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的平行四边形,不一定等底等高。
(2)画平行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,平行四边形面积就一定相等。
2、等底等高的平行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
平行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
平行四边形的面积教案设计
1、进一步认识平行四边形是中心对称图形。
2、掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。
3、充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。
教学重点与难点
重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。
难点:发展学生的合情推理能力。
教学准备直尺、方格纸。
教学过程
一、提问。
1、平行四边形的特征:对边( ),对角( )。
2、如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)
二、引导观察。
1、按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。
2、在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?
通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。
(培养学生用自己的语言叙述性质。)
三、应用举例。
如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。
(引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)
例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?
(本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)
四、巩固练习。
1、如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。
2、在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。
3、平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。
4。试一试。
在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。
5、练习。
如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?
五、看谁做得又快又正确?
课本第34页练习的第一题。
六、课堂小结
这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?
七、作业
补充习题
《平行四边形的面积》五年级数学教案 篇10
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程:
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
1、数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题:
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?
数学《平行四边形的面积》教案 篇11
教学内容:第70-73页练习十七第1-3题
教学要求:
1、理解平行四边形面积计算公式,能正确地计算平行四边形面积;
2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。
教学重点:运用面积公式解答实际问题。
教具、学具准备:教师准备微机及多边形、平行四边形课件两组、边可活动的平行四边形框架。学生准备任意大小(画有高)的平行四边形纸片、剪刀。
教学过程:
一、质疑导入
1、指出下面平行四边形的底和高各是几厘米?
2、向学生出示可拉动的长方形框架,问:要求这个长方形的面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)
3、分别用手拉长方形相对的一对角,使其变形为平行四边形后,问:原来的平行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:平行四边形面积计算)
二、引导探究
(一)、初探
1、微机出示第70页左图,让学生说出平行四边形底和高各是多少厘米,然后数出它的面积。
2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的.面积。
3、让学生观察、比较:
(1)两图形的面积都是18平方厘米,那么平行四边形的底和高与长方形的长和宽有什么关系?
(2)从上面的比较中你想到什么?
(二)、深究
1、做导引题下图中阴影部分面积是多少?
微机演示剪拼过程后让学生回答:
(1)剪拼前后,图形形状变了没有?面积改变没有?
(2)阴影部分面积是多少?
(3)解这道题你想到什么?
2、剪拼
(1)刚才用剪拼的方法解决了一个求面积的问题,你能不能用剪拼的方法,把平行四边形转化成学过的图形,求出它的面积呢?拿出平行四边形纸片,剪一剪,拼一拼,试试怎么样。
(2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。
3、引导学生分析得出:沿着平行四边形底边上的任意一条高,都可以把平行四边形剪拼成一个长方形。
4、归纳
(1)讨论:
A平行四边形剪拼成长方形后,两种图形的面积是否改变了?
B剪拼成的长方形的长和宽分别与原平行四边形什么线段长度相同?
C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?
(2)归纳、总结,推导公式。
A因为长方形面积=长×宽
所以平行四边形面积=底×高
B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah
C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。
三、深化认识
1、验证公式:
让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。
2、应用公式:
(1)引导学生解课本第72页例
(2)完成课本第72页做一做1
3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?
四、全课总结
五、课堂作业
1、第72页做一做2
2、练习十七1
3、练习十七2、3
板书
平行四边形的面积
数学《平行四边形的面积》教案 篇12
教材分析
“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础
学情分析
1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。
2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标
1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2.过程与方法目标:
(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。
(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
教学重点和难点
重点:理解掌握平行四边形的面积计算公式,并能正确运用。
难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学过程
(一)情境引入,以旧探新
这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)
这块花坛既不是长方形也不是正方形,如何求出这块地的面积?
为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)
(二)自主探究
方法一:用数方格的方法求平行四边形的面积
以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)
1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。
根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!
2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。
(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)
(2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)
(三)动手操作,验证猜想,得出结论
方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。
1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的`面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)
(2)学生实验操作,教师巡视指导。
3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?
(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)
(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)
(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)
(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)
4.全班交流推导公式:
(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!
(2)有没有不同的剪拼方法?(继续请同学演示)。
研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。
(3)板书平行四边形面积推导过程
(4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah
三、运用公式,解决实际问题
知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。
1.出示书上82页的1题,请大家做一做。
2.汇报交流:谁来说一说你是怎么做的?
3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)
四、巩固练习
1、试一试
计算下列平行四边形的面积,与同学说说你的方法。
35cm 20dm
26cm 28dm 5m
公式: 公式: 公式:
列式: 列式: 列式:
2、我能填得准。
(1)平行四边形的面积公式用字母表示为( )。
(2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。
五、课堂总结
反思一下刚才我们的学习过程,你有什么收获?
数学《平行四边形的面积》教案 篇13
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的`底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。