人教版七年级数学知识点大全 篇1
实数的概念
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数有什么范围
在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。
整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。
而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。
所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。
实数的性质
1.基本运算:
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
有理数范围内的运算律、运算法则在实数范围内仍适用:
交换律:a+b=b+a,ab=ba
结合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.实数的相反数:
实数的相反数的意义和有理数的相反数的意义相同。
实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
3.实数的绝对值:
实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|
①a为正数时,|a|=a(不变)
②a为0时,|a|=0
③a为负数时,|a|=a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
4实数的倒数:
实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)
初中数学分式的运算知识点
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”。
人教版七年级数学知识点大全 篇2
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
人教版七年级数学知识点大全 篇3
1小学生学数学要对它感兴趣
很多人都认为数学是一门相对较难的学科,实际上并不是这样的,只要你掌握了学习数学的技巧,对它产生兴趣,你会发现学习数学是一件轻松愉快的事情。调整好心态是学习的一个非常重要的方面,当你抱有积极的学习态度,才会让学习的效率更高。
2反复巩固复习知识点是学好数学的小窍门
小学生可能常常会出现这种情况,上课老师讲的都听的很清楚,也感觉自己都理解了,可是一到做题的时候就不知道该怎么解答。不知道小学生自己有没有反思过这个问题,认为究根寻底还是自己对基础知识掌握的不够深。
小学生上课时所学的知识,一定要在课后反复巩固,这样才能对所学的数学知识点有更深透的理解。不仅要反复复习巩固知识点,更要把自己做过整理的题型经常多翻翻看看。加深自己对各个类型的题型的记忆。
人教版七年级数学知识点大全 篇4
加法运算定律
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
运算顺序
(1)小数、分数、整数
小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。
(2)没有括号的混合运算
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
(3)有括号的混合运算
先算小括号里面的,再算中括号里面的,最后算括号外面的。
(4)第一级运算
加法和减法叫做第一级运算。
(5)第二级运算
乘法和除法叫做第二级运算。
三角形(第1条到第13条要背诵)
1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。
3、三角形具有稳定性。
4、三角形任意两边之和大于第三边。
5、三个角都是锐角的三角形叫做锐角三角形。
6、有一个角是直角的三角形叫做直角三角形。
7、有一个角是钝角的三角形叫做钝角三角形。
8、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
9、两条边相等的三角形叫做等腰三角形。
10、三条边都相等的三角形叫等边三角形,也叫正三角形。
11、等边三角形是特殊的等腰三角形
12、三角形的内角和是180°。
13、四边形的内角和是360°
14、用2个相同的三角形可以拼成一个平行四边形。
15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
人教版七年级数学知识点大全 篇5
一、认识图形(二)
1、认识平面图形
2、平面图形的拼组
用相同的正方形、长方形或三角形可以分别拼成更大的正方形、长方形或三角形。
2、认识七巧板
七巧板是由1个正方形、1个平行四边形、5个三角形组成的。
人教版七年级数学知识点大全 篇6
1、认识计数单位
在数位顺序表中,从右边起,第一位是个位,计数单位是“一(个)”;第二位是十位,计数单位是“十”;第三位是百位,计数单位是“百”。
2、100以内数的组成
一个两位数,十位上是几就有几个十,个位上是几就有几个一。
3、100以内数的读法
读数要从最高位读起,百位上是几就读几百,十位上是几就读几十,个位上是几就是几。末尾的0不读。
4、100以内数的写法
写数要从最高位写起,有几个百就在百位上写几,有几个十就在十位上写几,有几个一就在个位上写几。
除最高位外,哪一位上一个计数单位也没有,就写0占位。
5、100以内数的大小的比较
(1)先比较十位,十位上的数大的,这个数就大。
(2)十位相同再比较个位,个位上的数大的,这个数就大。
6、百数表
7、用语言来描述数的大小关系
两数相差很少,用“多一些”“少一些”描述;
两数相差很多,用“多得多”“少得多”描述。
8、整十数加一位数及相应的减法
几十加几等于几十几,
几加几十等于几十几。
几十几减几等于几十,
几十几减几十等于几。
人教版七年级数学知识点大全 篇7
2.直线与圆的位置关系
直线与圆的位置关系
当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:
直线与圆相切的判定定理:
经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:
经过切点的半径垂直于圆的切线。
切线长定理
从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
三角形的内切圆
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图
投影
物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
简单几何体的三视图
物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
由三视图描述几何体
三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
简单几何体的表面展开图
将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。
人教版七年级数学知识点大全 篇8
作者是按照由远及近的顺序观察燕子的