【前言】在数学教学中,教案的编写是至关重要的一环。而对于《三角形的边》这一主题,我们需要精心设计教案,以便让学生能够深入理解三角形边的性质和应用。下面,我将为大家分享一份详细而全面的数学教案,希望能够帮助学生们在学习中取得更好的成绩。本文是会员“qiaozhanmukongwu”整理的《三角形的边》数学教案(共6篇),供大家赏析。
《三角形边的关系》教学设计 篇1
【教学目标】
教学重点:“三角形任意两边之和大于第三边”的关系的探究和归纳。 教学难点:判断怎样的三条线段能构成三角形?
教学关键:让学生合作交流,通过实验和观察PPT课件,从中体验三角形的三边关
系及构成三角形的条件,并从中探索出解决这种问题的实质。
教学准备:教材、PPT演示文稿、小棒
教 法:情境导入法、设疑诱导法、操作发现法、观察、归纳,分析归纳教学法; 学 法:实验操作法、合作探究法、观察法、分析法、归纳法,对比法。 教学课时:一课时
教学过程:
一、导入新课,板书课题
上课后,放幻灯片1引入新课。
二、 展示学习目标
放幻灯片2-3
放幻灯片4 导学案反馈。
老师:讲出现的问题及强调得到的结论。放幻灯片5、6知识应用。
三、 合作交流 (8分钟)
放幻灯片7 合作交流的要求。 老师巡视观察学生完成学案的情况。
四、 高效展示 (8分钟)
放幻灯片8 高效展示要求。
五、 点评(约15分钟)
展示完成后 ,放幻灯片9点评要求。2分钟以后按照分工开始点评。 点评【活动一】完成后放幻灯片10,老师点拨。学生继续点评。
学生点评完【跟踪练习1】后,放幻灯片11 变形练习 。完成后学生继续点评。
初中数学三角形教案 篇2
教学内容:
含有几个小三角形(《现代小学数学》第三册智力游戏)。
教学目标:
1、选择一个适当的图形为单位,进行图形的分解训练,分析几何图形之间包含的关系。
2、初步培养学生观察能力、空间观念和推理能力。
3、养成仔细观察,认真审题的好习惯。
教学重点:
如何把一个图形分解成单位图形。
教学难点:
推导图形中含有几个小三角形的推理过程。
教学用具:
小黑板、彩色图形、小卷子两张(同题板1、题板2内容)
教学过程:
(课前板书课题:含有几个小三角形)
一、复习导入
师生问好,开始上课!
1、导入
师:这儿有三种图形,你知道它是什么形状吗?它呢?
(师一个个出示,生分别说出是什么形状)
2、准备题(一)
师:我们看投影上的这些图形,你能从这些图形中找出一共有几个三角形、几个正方形、几个长方形吗?
一共有( )个三角形
( )个正方形
( )个长方形
(一问一问出示,用数字板反馈,并说出是哪几号图形)
师:这节课我们一起来研究图形之间的包含关系。继续看投影。
3、准备题(二)
考眼力:下图中各是由几个相等的小三角形拼成的?
二、探讨新知
第一层次:动手实践
1、师:请你想办法求出下面各题的结果。(出示题板1)
(反馈①)生回答后追问:你是怎样想的?
生:用
摆了摆含有2个
生:斜着画一条线,分成了2个小三角形
生边说师边画:
(反馈②③步骤同上)
请学生用学具亲自来验证答案
第二层次:讨论研究
2、师:如果把这三个答案作为已知条件(板书:已知)
你能求出下面的问题吗?(出示题板2)
师:用什么方法可以得到正确答案,前后桌4人一组进行讨论。(拿出小卷子2)
(反馈①)生:可以画一画
师追问:还有其他的方法吗?
生:我们已经知道1个长方形含有2个小正方形,1个小正方形含有2个小三角形,2个小正方形含有(2×2=4)个小三角形,所以1个长方形有4个小三角形。
师:刚才××同学用的方法太好了,他用的方法叫推理方法,根据已知的一个或几个判断,推导出最后的结论,这种方法就是推理的方法。
还有谁用了推理的方法,你能说说你是怎样推理的吗?其他同学在心里和他一起说说。
(反馈②)生:可以画一画
生:可以用推理方法(同①的步骤)
(采取个人说,同桌对说练习推理方法,请学生用单位图形验证所得的结论,肯定学生的答案和方法都很正确。)
第三层次:运用推理
师:刚才同学讨论得特别好,再出一问:(出示题板3)
师:你能用推理方法得出结论吗?请4人一组讨论。
反馈①生:画一画
反馈②
方法一:
1个大正方形含有4个小正方形
1个小正方形含有2个小三角形
4个小正方形含有(2×4=8)个小三角形
所以1个大正方形含有8个小三角形
方法二:
1个大正方形含有2个小长方形
1个小长方形含有4个小三角形
两个小长方形含有(4×2=8)个小三角形
所以1个大正方形含有8个小三角形
方法三:
1个小正方形含有2个小三角形
1个小长方形含有(2×2=4)个小三角形
1个大正方形含有(2×2×2=8)个小三角形
师:用推理的方法算出的结果是否正确,请4人一组用虚线画一画验证我们推理的结论正确吗?(事先发给每组一张有6个大正方形的纸)
反馈:
对比:师:上面两题所含的两种小三角形个数为什么不一样?
生:小三角形的大小不一样,个数也不一样。
三、巩固练习(投影反馈)
1、下面的图形里含有几个这样的?
2、涂阴影的小三角形拼成下面的图形,各需要几个?
3、下面图形分别是用多少个像图内那样的小三角形组成的?你能用虚线画一画吗?
板书
《三角形三边关系》教学设计 篇3
教学目标:
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
教学重点、)白话文●(难点:探索并发现三角形任意两边之和大于第三边。
教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。
教学过程:
一、复习旧知,导入新课
这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(课件1演示猜想1)
1、学法指导
师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。
操作要求:
(1)、2人一组合作完成四种拼法
(2)、围三角形时要注意首尾相连。
(3)、完成后,填写好活动记录表准备交流
第一根小棒长
第二根小棒长
第三根小棒长
能否围成三角形
2、动手操作,寻找规律(师巡视,并指导)
3、交流汇报,探究规律。
师:哪个小组愿意来汇报。
小组上台展示,
3厘米、8厘米、10厘米 能
3厘米、5厘米、10厘米 不能
3厘米、5厘米、8厘米 不能
5厘米、8厘米、10厘米 能
师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?
先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)
师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8重合了 不能
师:是这样吗?(课件演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。
3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了。
师:看来只是其中的两条边之和大于第3条边是不完整的。
生1:加“任何”、“任意”。
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)
师:是这样吗?再挑选一组能围成三角形的三条边,来验证:
生:3+4>5、3+5>4、4+5>3,
师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、课堂小结
老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?
师:今天你有什么收获?
三角形的边教学设计 篇4
教学目标
1、让学生结合实例并根据自己的认识和理解概括出三角形的定义;
2、会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类;
3、理解三角形任何两边之和大于第三边的性质,并会应用性质解决问题;
4、在探索三角形三边关系的过程中,让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。
5、在教学中让学生体会成功的喜悦。
教学重点
三角形三边的关系;
教学难点
三角形三边的关系的应用。教具小黑板、卷
教学过程
教学环节教师活动学生活动设计意图
一创设
情境:5分
二、探究新知:25分
三、尝试练习,体验成功:12分
四、小结升华:2分
五、布置作业:1分
板书:教师导言:同学们都知道三角形是最基本、最常见的几何图形,从古代埃及的金字塔到现在的飞机到处都有三角形的形象。
一、定义:定义中应注意:
(1)不在同一直线上;(2)三条线段;(3)首尾顺次相接。
接着回忆与三角形有关的概念:顶点、角、边--板书课题三角形的边。
老师讲述三角形的表示方法:
回忆三角形按角分类;
二、三角形按边的相等关系分类:(老师板演)接着介绍与等腰三角形有关的一些概念。之后给出【动脑筋】中的第一问。(在小黑板上。用一条长为18cm的细绳围成一个等腰三角形,(1)如果腰长是底的二倍,那么各边长是多少?).
三、三角形三边关系:
出示【探究题】:任意画一个△ABC,假设一只小虫从点D出发,沿着三角形的边爬到点C,它有几条线路可以选择?哪条线路最短?
教师小结:利用三角形三边关系解决三角形能否组成三角形以及生活中的一些实际问题。
【例】判断下列各组线段中,哪些能组成三角形?不能组成,请说明理由。(1)4cm,9cm,5cm(2cm,8cm,13cm.(3)2cm,6cm,3cm
(4)3cm,4cm,5cm..
【动脑筋】第二问:(2)能围成有一边长为4cm的等腰三角形吗?为什么?
(一)仔细填一填:1、2、3
(二)认真选一选:4、5、6
(三)看谁最聪明!
在第三问中力求给学生充分的思考空间,教师起引导作用。
1、三角形的表示及分类;
2、三角形三边的关系,学会用简单的方法判断三角形的组成情况;
3、在解决等腰三角形边与周长的问题中,1、当条件不明确时,要进行讨论;2、检验三角形能否组成。
一、必做题:69~1、2
二、选做题:练习册。
板书写在小黑板上。让学生结合生活实例并根据自己的认识和理解概括出三角形的定义。
在图形中让学生领会注意要点。
学生口答小试牛刀:
让学生回忆,
让学生尝试,老师补充。
让学生分析解题思路,并口述。
让学生在下面任意画一个三角形,观察从B~C有几条线路可走?再测量验证一下。并尝试运用所学知识说明道理。最后归纳出三角形三边的关系。
三、三角形两边之和大于第三边。(b+c>a;a+b>c;a+c>b)
让学生口答。老师提出问题:在判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条线段之和都大于第三边呢?有没有更简单的方法呢?让学生试着概括出:看较小的两边之和是否大于第三边。
启发并引导学生分析,得出:1、2
学生口述,老师板书。
让学生在5、6题中要注意的地方。
由学生讲述解题思路,老师补充。
学生小结,老师补充。让学生概括定义,老师补充。
自然引入课题。
巩固与三角形有关的一些知识。
第一问在这处理目的为了分散本题的教学难点。
让学生经历了观察、实验、推理、交流等活动,培养了学生空间观念和推理能力。
培养学生的归纳和概括能力。
【动脑筋】第二问给学生充分的思考时间。突出教学重点和教学难点,
体验成功的喜悦。
检验学生对教学重点和教学难点的掌握情况。
培养学生的归纳和概括能力。
体现分层次教学。
《三角形的边》教学设计 篇5
教学目标:
知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。
过程与方法:.积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。.能根据三角形三边的关系解释生活中的现象
情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。
教学重点:三角形三边关系的实验与探究。
教学难点:利用三角形三条边之间的关系解决实际问题。
教具准备:三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt
教学过程:
一、导入。
1、谈话创设情境:
这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)
2、复习旧知:
(1)(欣赏图片)你看到了什么?
(2)那你能说一说,你对三角形都有哪些了解?
(3)三个顶点,三个角,三条边,三角形具有稳定性;
(4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。
3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课
二、动手操作、探究新知。
(一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?
操作要求:
1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员
2、测量员量出你所选择的纸条的长度;
3、记录员做记录;
4、操作员动手拼三角形,把你拼出来的图形贴在下面;
5、组长汇报结果。
注意:相邻的两条线段要端点相连。
(二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。
展示操作结果:
试验次数三边长度(cm)结果三角形三条边的长度关系
(1)3、5、9否较短的两条边长度之和小于第三边3+5<9
(2)3、6、9否较短的两条边长度之和等于第三边3+6=9
(3)3、5、7是较短的两条边长度之和大于第三边3+5>7
(4)5、6、7是较短的两条边长度之和小于第三边5+6>7
(5)5,8,13否较短的两条边长度之和等于第三边5+8=13
(6)7,11,12是较短的两条边长度之和大于第三边7+11>12
(7)18,7,5否较短的两条边长度之和小于第三边5+7<18
(8)11,4,15否较短的两条边长度之和等于第三边4+11=15
(三)引导学生发现特性:(课件演示)
1、两条边的长度之和小于或等于第三条边的长度不能围成三角形
2、较短的两条边的长度之和大于第三条边的长度能围成三角形
3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)
4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?
三、精彩练习、拓展提升。(课件出示)
在能围成三角形的各组小棒下面画“√”。(单位:厘米)
(5)1cm2cm3cm()(6)4cm2cm3cm()
(7)3cm4cm5cm()(8)3cm3cm5cm()
四、学以致用。
(一)、课件出示:课本82页例3情境图。
1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?
2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?
3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)
(二)完善表格。
小棒长度(厘米)能否围成三角形
第一根第二根第三根
35
35
35
35
35
35
35
35
五、课堂总结。
同学们,通过今天的研究你有什么收获吗?
1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。
2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。
板书
三角形三边关系
三角形任意两边之和大于第三边。
两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。
《三角形边的关系》数学教案 篇6
教学目标
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
教学过程
一、创设情境,导入新课
师:(出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)
师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?
(学生困惑,沉默不语.)
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
(板书课题:三角形的三边关系)
二、设疑激趣,动手探究
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
你的重大发现
三、汇报交流,发现规律
让每组同学汇报围成和围不成三角形的数据。
师:同样用三根小棒,为什么有的能围成三角形,为什么有的不能围成三角形呢?你从中发现了什么?
根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)
师:到底什么样长度的三根小棒可以围成三角形呢?
结论一:两边之和大于第三边。
师:同学们都同意这个结论吗?有不同意见吗?
根据学生的情况,随机用不能围成的一组数据,如“3、7、10”举一例:3+10>7,那为什么不能围成一个三角形呢?
师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?
进一步得出结论二:三角形任意两边之和大于第三边。
师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。
师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。
四、学以致用,解决问题
1.解释老师所行路线的原因。
2.判断。
3.(课件演示)小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?
五、全课小结。