欢迎来到61范文网!
您现在的位置:首页 > 综合范文

平行四边形的面积9篇

时间:2023-10-08 20:09:01 综合范文

平行四边形的面积 篇1

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:

  1、掌握平行四边形的面积计算公式。

  2、会计算平行四边形的面积。

  教学难点:理解平行四边形面积公式的推导过程.

  教具准备:课件,平行四边形的纸片。

  学具准备:学习卡,每个学生准备一个平行四边形。

  教学过程:

  一、导入

  1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

  2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

  板书课题:平行四边形的面积

  二、平行四边形面积计算

  1.用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

  学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。

  教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  4.出示例1。读题并理解题意。

  三、巩固和应用

  1、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等( )

(2)平行四边形底越长,它的面积就越大( )

  2、计算。

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业:练习十五第1、2题。

  六、板书设计

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学反思

  本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

  一、重在每个孩子都参与

  本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  二、渗透“转化”思想,让所积累的经验为新知服务

“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!

平行四边形的面积 篇2

  教学目标

  知识与技能:

  在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

  过程与方法:

  通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

  情感态度与价值观:

  通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

  教学重难点

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学工具

  多媒体课件,平行四边形纸片,剪刀,学具袋

  教学过程

  教学过程设计

  1 、复习旧知

  请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

  2 、情境引入

  (一)、故事激趣

  同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

  (二)、学生思考、猜测

  学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

  3、探究新知

  (一)利用方格,初步探究

  1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

  课件出示:比较两个图形的大小,然后引进格子图。

  师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

  2、同桌交流方法

  3、生汇报想法

  4、通过数方格你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

  5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

  如果,我用数方格的方法得到这个平行四边形的面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

  (二)动手操作,深入探究

  1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

  2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

  师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

  (板书:割补法)

  3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

  4、展示学生作品:不同的方法将平行四边形变成长方形。

  提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

  平行四边形的`底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

  引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

  (边说边板书)

  4 、学以致用

  (一)、课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

  (板书:S=ah=6×4=24㎡)

  (二)、课件出示练习题,学生独立完成。

  1、有一块地近似平行四边形,底43米,高20、1米,面积是多少平方米?

  2、填表

  3、判断:

  (1)平行四边形的底是7米,高是4米,面积是2 8米。()

  (2)a=5分米,h=2米,S=100平方分米。()

  4、下面对平行四边形面积的计算对吗?

  6×3=18(平方米)()

  5、下面对平行四边形面积的计算对吗?

  8×7=56(平方分米)()

  6、思考题:你有几种方法求下面图形的面积?

  课后小结

  回想一下刚才我们的学习过程,你有什么收获?

  计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

  板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

平行四边形的面积 篇3

  平行四边形面积的计算是五年级上册第五单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

  课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自己的设想大相径庭。

  (1)数方格中的得与失。

  教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加上平行四边形中有不满1格的情况,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有能力的同学向转化的方法靠拢。

  学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自己安慰自己:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就可以随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学可以为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的准备。

  (2)面积推导中的意外收获。

  在推导平行四边形面积计算公式时,我鼓励学生大胆想象,通过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的希望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。

  “老师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。

  “老师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。

  “我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自己的做法。

  “你觉得合适吗?”我把判断的权利交给了学生。

  “不行,虽然也能变成长方形,但是,这个长方形和原来的平行四边形相比少了两块。”刘子谦认真分析道。

  “我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。

  “谁能帮忙改一下?”

  “只要把剪下来的两小块加上就可以了。”易凡把剩下的两块小心翼翼地加在了一侧,又把它拼成了一个新的长方形。

  “我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。他的方法立刻引起了争议。

  “老师,我不同意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自己失败的作品站上来说。

  “为什么都是沿着对角线剪开的,这两位同学拼得结果却不同呢?”我把两位同学的作品同时放在展台上,让大家观察。

  “两个平行四边形的形状不同。”学生很快就找到了原因。

  “能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。

  “这条对角线,恰好是平行四边形的高。”

  “看来,只有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。

  通过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,但是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。

  这是我比较得意的环节。但功劳不在我,而在我的学生。

平行四边形的面积 篇4

《平行四边形的面积》说课稿

  一、说教材

  1。对教材的分析:“平行四边形的面积”是本册书第四单元“多边形的面积的计算”的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础。

  2、对教学的思考:本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识。,本节课以“活动”为主线。让学生在已有知识经验的基础上大胆猜想,主动参与到数学知识的探索、发现过程中,经历验证猜想的全过程。在获取新知识的同时,通过操作活动,培养学生大胆猜想、科学验证的思维方式,逐步形成自主学习的能力。

  为此把教学目标及学校目标定为以下:

  1、经历平行四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

  2、学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

  3、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和的思想,并培养学生的分析、综合、抽象概括和动手解决实际问题的能力。

  在读懂和理解教材的基础上,为了体现教材“问题+情景串”中的教学价值和数学思想。我们的教学设计通过两次猜想,两次操作验证经历整个探究活动,贯穿整个教学过程。首次猜想:猜想平行四边形面积是邻边相乘6乘5,还是底高相乘6乘3(到底哪个是正确的呢?该怎么办呢,从而引发思考)数学是一门科学,引发验证的必要:通过操作去验证。通过什么样的操作去验证呢?我们让学生结合学具自主去操作,去发现,去探究,通过实际的教学预设和研究,学生能够完全利用所给的学具,:用数格子和长方形与平行四边形的重叠比较这些操作活动发现验证。在这个操作活动除了得到正确的6乘3,同时通过数形结合,初步感知6乘3就是平行四边形底乘高,并以此再次提出猜想:那是不时任何平行四边形的面积都是底乘高呢?从而又一次引发学生的思考?再次提出通过操作验证底乘高。于是通过操作把问题聚焦在通过未知转化为已知,也就是把平行四边形转化为长方形,通过操作过程中的剪、拼,观察,比较,在得出长方形的长就是平行四边形的底,宽就是高,这个平行四边形公式的探究过程,发展学生的空间观念,渗透转化和的思想,并培养学生的分析、综合、抽象概括和动手解决实际问题的能力。

  最后就是分层运用,理解新知: 对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则

  1、教学内容:

  2、学生分析:学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  3、教学目标:根据新课标的要求及教材的特点,以“学生的全域发展”作为标准,从“知识与技能、过程与方法、情感、态度与价值观”三个维度确定如下教学目标:

  知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

  能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析、综合、抽象概括和动手解决实际问题的能力。

  情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  4、教学重点:探究平行四边形的面积公式,并能用公式解决实际问题。

  5、教学难点:探究平行四边形的面积公式。

  6、教具准备:平行四边形纸片,剪刀,直尺等。

  二、说教法、学法

〈〈数学课程标准〉〉提出了重视学生学习过程的全新理念,要充分发挥学生的主动能动性,让学生参与知识发生发展的全过程。本节课中,我采取多种手段引导学生积极参与学习过程。本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识,指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。另外,我还力图体现学生学法的转变:从被动接受学习变为在自主、探究合作中学习,让学生自己提出问题,再自己想办法解决,让学生亲身体验知识的形成过程,促使学生思维的发展,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

  三、说教学过程

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,我把教学过程分为以下几个教学环节:

  1、问题导入,设疑激趣

  为了跳出陈旧的数学课单纯讲知传道的框架,让学生体会数学学习的快乐。在新课开始,除了复习以前学过的一些图形的面积外,我还出示了一个不规则图形,以怎么知道它的面积来设疑导入,激发学生积极探求知识奥秘的欲望,启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的方法。

  2、数方格法,初步感知

  用“平行四边形和长方形比较大小”这个问题,首先引导学生用数方格的方法尝试。学生认真观察后,完成表格,最后讨论总结出:长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两个图形的面积相同。这一组简单操作,实际上是组织学生从感性到理性认识长方形的长、宽与平行四边形的底、高相同的内在联系。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气愤异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验。

  3、抓住重点,深入推导

  学生认知是由浅入深的,通过数方格,他们已经知道:两个图形面积相等,长方形的长和平行四边形的底相等,宽和高也相等。但这三个结论之间并没有在学生思维中产生联系,而这个联系正是本节课的重难点,于是我启发学生:“如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积该怎样计算呢?”,引导学生讨论,学生不受任何束缚,开动脑筋,最后共同得出可以把平行四边形转化成长方形的方法,激活了学生的思维和创新意识,培养了他们自主探究的精神。

  4、动手操作,探究新知

  学生动手操作把平行四边形转化成长方形,选取代表进行汇报交流,找准切入点,突破难点。利用从学生汇报中得来的信息,引导学生说出“沿着平行四边形的高剪开,通过平移的方法,拼成一个长方形”的转化过程,和“拼成的长方形的长就是平行四边形的底,拼成的长方形的宽就是平行四边形的高”这个关系。这不是教师强加给他们的,而是学生自己研究讨论的结果,是课堂中生成的收获。这一环节的安排,既锻炼了学生的动手能力,也发展了学生的空间概念,更为下一步推导面积公式积累了感性经验。

  5、电脑演示,总结新知

  感性经验的积累和实践的结果,再加上电脑课件的演示,学生通过讨论很容易达成共识,借此推导出平行四边形面积公式并进行板书。整个新知识的教学,充分尊重学生的主体地位,让学生动手、动口、动脑,发现、比较、归纳,利用多媒体课件,从具体到抽象,从感性到理性循序渐进,推导出平行四边形面积计算公式,突破了难点,解决了关键,培养发展了学生能力。另外,在总结公式后,我还安排了一个“你知道吗?”,介绍我国古代数学家对平面图形面积的推导和计算方法,丰富学生对我国数学史的认识。

  6、分层运用,理解新知

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

  基础练习:出示例1,先让学生口述计算过程,然后教师进行规范的板书。

  提升练习:借助3道选择题,巩固平行四边形面积公式推导过程。

  发散练习:比较平行线间两个平行四边形的面积和设计一个为24平方米的平行四边形的广告牌,让学生综合运用知识,进行逻辑推理,使学生明白等底等高平行四边形的面积相等以及面积相等形状不同等。

  整个习题设计部分,涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣,引发了思考,发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  7、全课小结,整理知识

  让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力,并借此板书课题“平行四边形的面积”,达到点题的效果。

  这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生都能积极的参与教学活动,在实践中理解新知,并尽可能地多角度来验证结论,学生的动手操作能力,逻辑思维能力得到提高,求异思维和创新能力得到训练。学生掌握了学法,也为学习提供了一把释疑解难的钥匙。

平行四边形的面积 篇5

  今天我说课的内容是人教版数学五年级上册第五单元《平行四边形的面积》。下面我将从教材、学情、教学目标、教法学法、教学过程和评价六个方面进行说课。

  一、说教材

  几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。而本课是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,在理解的基础上掌握公式。同时也为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节,更是承上启下的重要章节。

  二、说学情

  新课改下成长起来的五年级学生,善于独立思考,乐于合作交流,有较好的学习数学的能力。再加上他们已经掌握了平行四边形的特征和长方形面积的计算方法,这些都为本节课的学习奠定了坚实的基础。但是,让学生切实理解长方形与平行四边形之间的联系是一个难点,需要他们在探索活动中,循序渐进、由浅入深地进行操作与观察,从而进一步理解平面图形之间的变换关系,发展空间观念。

  三、说教学目标

  根据新课标的要求,基于对教材与学情的分析,我确定了如下教学目标:

  1.知识与技能目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

  2.过程与方法目标:经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化和平移的思想,培养学生的分析,综合,抽象概括和动手解决实际问题的能力。

  3.情感、态度与价值观目标:通过活动,激发学生的学习兴趣,使之感受到数学知识的应用价值和探究知识的乐趣,感受数学与生活的密切联系。

  教学重点:平行四边形面积计算公式的推导及运用。

  教学难点:通过转化,发现长方形和平行四边形之间的联系,推导出平行四边形的面积计算公式。

  四、说教法、学法

  1.教法:依据新课标,结合教材的编排意图与学情状况,针对小学生以形象思维为主的特点,我主要采用情境教学法、实际操作法、观察比较法和引导探究法等等,组织学生开展丰富多彩的数学活动,以激发他们的学习兴趣,调动他们的学习积极性,为他们创建一个发现、探索的思维空间,使他们能更好地去发现、去创造。

  2.学法:“授人以鱼,不如授人以渔”。在教学中,我鼓励学生自主探究、合作实践,组织学生认真观察、分析讨论,引导学生通过观察、比较、操作、概括等行为来解决问题。

  五、说教学设计

  为了能更好地凸显素质教育课堂教学观,高效的完成教学任务,结合教材与学生的特点,我设计了如下环节:

  (一)导入

  为了让学生体会到数学的神奇,在新课伊始,我根据学生的兴趣特征设计了这样一个活动:(出示长方形的模型)把它拉伸会变成一个什么图形?你能画出它的高吗?你能计算出此图形的面积吗?通过这样的活动,在帮助学生巩固知识的同时,也制造出了以学生现有的知识水平无法解决的麻烦,从而激发了学生积极探求知识奥秘的欲望,更是水到渠成的导入了新课:(板书)平行四边形的面积。

  (二)习新

  “学起于思,思源于疑。”正是因为导入中制造的麻烦,让学生们有了探求的欲望。于是,我顺水推舟的设计了这样一个探究活动:在钉子板上用橡皮筋围了两个图形:一个长方形,一个平行四边形(面积与长方形一样大)。然后出示设计的问题:

  1. 请测量长方形的长和宽,平行四边形的边长和高。

  2. 请计算出长方形的面积。

  3. 你猜测平行四边形的面积该如何计算?

  带着这几个问题,开始小组合作探究。虽然探究可能会出现平行四边形的面积=边长×边长这样的结果,但是学生们学习的主动性得到了的发挥,学生的个性得到了彰显,能让他们体会到探究的乐趣。

  在学生们展示完自己的结论后,我先不评价其结论的对与错,而是出示第四个问题:

  4.请用数方格的方法验证自己的结论。(不满一格的都按半格计算。)

  这样,就促使学生们迫不及待的去验证自己的结论,从而达到为下一步推导平行四边形面积计算公式做好准备的目的。

  通过上面的探究活动,让学生们归纳出对这两个图形的认识:两个图形面积相等,长方形的长和平行四边形的底相等,宽和高也相等。虽然他们能认识到这些,但这三个结论之间并没有在他们的思维中产生联系,而这个联系正是本节课的重难点。为了突破这个难点,于是我又设计一个活动:出示一个平行四边形。

  1.请画出它的高,测量它的底和高的长度。

  2.沿着它的一条高裁剪,将会剪出两个什么样的图形?

  3.你能否把这两个图形拼成一个我们熟悉的图形?

  4.观察拼出的长方形和原来的平行四边形,你发现了什么?

  (长方形的长和平行四边形的底相等,宽和高相等,面积也相等)

  5.你能总结出平行四边形的面积计算公式吗?

  通过这一系列的问题,引导学生们去交流讨论、合作探究、实验验证。这样既锻炼了学生的动手能力,也发展了学生的空间概念,同时也培养了学生的协作精神,更渗透了转化与平移的思想。

  在学生归纳总结出平行四边形的面积=底×高,即S=ah之后,我又让学生们独立学习课本上的例1,再回过去解决导入中的问题,以此加深对面积计算公式的理解。

  (三)巩固

  理解了平行四边形的面积计算公式之后,我及时组织学生巩固运用。安排这样几道练习题:

  1.画出下列平行四边形的高。

  2.量出平行四边形的底与高的长度,并计算其面积。

  学生们独立思考,完成练习,使其进一步理解了公式的运用,真正达到了学以致用的目的。

  (四)拓展

  巩固新知后,我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

  1. 这个平行四边形的高是多少?(P82/3)

  2. 出示导入中可活动的长方形框架,任意拉这个框架,形成平行四边形,你知道它们的周长和面积有什么变化?什么情况下它的面积最大?

  学生独立完成第一题,合作探究第二题,从而达到拓展视野,加深理解的作用。整个习题的设计,虽然题量不多,但涵盖了本节课所学的知识点。同时练习题的设计遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力,同时也激发了学生的兴趣、引发了思考、发展了思维。

  六、说评价

  整节课我始终坚持把对学生学习过程的评价,贯穿于整个教学过程之中:对他们发现问题和解决问题的能力,通过展示来实现;对知识的理解和掌握,通过双向反馈来落实。

  总之,本节课我贯穿新课改的理念,坚持以教师为主导,学生为主体,让学生经历“发现问题-解决问题-归纳总结-构建模型”的学习过程,让他们都参与到活动中来,真正实现面向全体。

平行四边形的面积 篇6

教学内容:

  人教版实验教科书五年级数学上册第五单元。

  教学目标:

  1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

  2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

  3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

教学重点:

  使学生理解和掌握平行四边形面积公式并会应用。

教学难点:

  理解平行四边形面积计算公式的推导过程。

教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、三角板。

教学流程

(一)创设情境,设疑引入

  谈话:出示两个美丽的花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢?

  师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

  然后给出长方形的长和宽让学生计算长方形的`面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  板书课题:平行四边形的面积

(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)

操作探索,获取新知

1.数方格感知平行四边形和长方形之间的关系

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

(2)汇报交流自己的发现。

(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)

2、应用“转化”思想,引入割补、平移法.

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

3、建立联系,推导公式

(1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?(=)

  b、拼成长方形的长与原来平行四边形的底有什么关系?(=)

  c、拼成长方形的宽与原来平行四边形的高有什么关系?(=)

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本81页。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

(二)巩固应用,内化新知

  a、前面的花坛题

  b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

(四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

  课后反思:

  通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。

●成功经验

一、注重采用“自主探究、合作交流”的学习方式。

  尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

二、注重数学方法和数学思想的渗透。

  在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

三、注重运用现代教学手段辅助课堂教学。

  这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

●失败教训

一、在教学中个别地方没有给学生留有足够的思考时间。

  比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

二、教学中的细节问题注意不够。

  例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

  总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

平行四边形的面积 篇7

  本节课我以学生已有的知识经验为基点,以学生的自主探究学习和多向思维发展为主线,以分层训练为手段,让学生经历了数学化探索和知识回归应用的过程,通过课后的深思,我认为本课教学力求体现以下三点:

  1.目标定位准确,教学思路清晰。

  本节课我的目标意识较强,以“创设情境——自主探究——操作验证——实践应用”为主线,探究过程细化为猜想、操作、推导和深化四个层次,教学思路清晰,重点难点突出,适时充分地创造条件,引导学生在参与探究知识形成的过程中想问题、寻方法、得结论,从而培养了学生的操作、观察、分析的能力和探究过程中用不同方法解决问题的能力。

  2.模型建构合理,方法渗透有效。

  “转化”是数学学习和研究的一种重要思想方法,平行四边形面积公式的推导所蕴含的转化思想,对学生今后推导三角形、梯形面积公式具有重要意义。整个教学过程中我以学生为主体,鼓励学生自主探究,大胆质疑,不仅启发学生把研究的图形转化为已经会计算的面积的图形,渗透转化的数学思想方法,而且着重让学生通过画、剪、拼、摆等动手操作的活动来让学生亲历自主探究的过程。同时引导学生去探究所研究的图形与转化后的图形之间存在的等量关系,从而导出面积计算方法,重视引领学生探索平行四边形面积计算公式背后所隐含的知识结构的提炼,从而让学生更好地建立起平行四边形面积计算公式这一数学模型。

  3.练习设计巧妙,知识应用深化。

  本节课练习的设计目标明确、形式多样、层层递进,第一题的基础练习从最基本的已知平行四边形的底和高直接计算面积开始,熟练运用计算公式计算。第二题要求学生认真审题,让学生发现多余条件的情况下需要选择相对应的底和高计算面积,进一步感悟底和高对应关系,并发挥此题的作用,进行逆向应用,由面积和高求出底,由面积和底求出高。第三题是开放练习题,让学生结合平行线间距离处处相等发现等底等高平行四边形面积相等;此题开放度广,为学生今后逻辑思维的发展和解题能力的提高打下了良好的基础。第四题是求出方格纸格中的平行四边形和三角形面积,在数三角形面积时,初步渗透它的面积计算及其与平行四边形的关系,为三角形面积公式的推理埋下伏笔,同时回归学生原有的认知起点,通过用数格子方法弥补本课教学上一点缺失,以达到培养学生的多向思维能力的目的。

  综上所述,整节课的教学力求体现“在探究活动中感悟——在操作活动中合作交流——在反馈发现中总结规律——在灵活运用中拓展延伸”这一基本课堂教学流程。学生在丰富的活动探究中体验到知识的产生、发展的过程,不仅增长了知识、提高了能力,而且获得了深层次的情感体验。

平行四边形的面积 篇8

  教学内容:

  人教版五年级上册教材P87~88例1及练习十九第1、2、3题。

  教材分析:

  《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。

  学情分析:

  学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。

  教学目标:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

  情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。

  教学重点:

  探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教学方法:

  迁移式、尝试、扶放式教学法

  教学准备:

  师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。

  教学过程:

  一、情境导入

  1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)

  2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

  3.提问:你会算它们的面积吗?

  生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)

  师:非常好!那平行四边形的面积怎样计算呢?

  4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)

  二、互动新授

  (一)利用方格,初步探究。

  1.想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?

  生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。

  出示教材第87页方格图以及平行四边形和长方形。

  (引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)

  2.同桌交流方法并完成教材87页的表格。

  3.汇报想法。谁愿意说说你数的方法?

  4.根据填表的结果进行讨论:你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。

  5.小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。

  提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

  6.引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。

  (二)动手操作,深入探究

  1.介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。

  2.活动要求:

  (1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。

  (2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。

  (3)尝试推导出平行四边形的面积公式。

  比一比,那个小组做得又快又好。

  3.汇报交流。

  让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。

  质疑:你们为什么要沿高剪呢?

  生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。

  4.课件演示剪拼过程。

  师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。

  运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。

  5.引导学生小组思考讨论:

  (1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  (2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?

  (3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?

  学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

  6.引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)

  追问:要求平行四边形的面积必须知道什么条件?

  学生得出结论:必须知道平行四边形的底和对应的高。

  7.教学用字母表示。

  师:翻开教材自学第88页倒数第二自然段的内容。

  师:你学到了什么?

  生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)

  8.课件演示,加深理解。

  9.小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。

  (三)应用公式,解决问题。

  出示教材第88页例1.

  学生读题,理解题意;独立完成;教师板书。

  三、巩固新知,拓展提升。

  1.计算出下面每个平行四边形的面积。

  4.快速填表。

  5.比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。

  练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。

  四、回顾总结

  师:这节课你学会了什么,有哪些收获?

  五、布置作业:教材第89页练习十九第1、2、3题。

  板书

  平行四边形的面积

  长方形的面积=长×宽S=ah

  ↑ ↑ ↑ =6×4

  平行四边的面积=底×高=24(m2)

  S=ah

平行四边形的面积 篇9

  教学内容分析:

  平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

  设计的理念:

  学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

  教学目标:

  1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

  3. 引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

  教学重点:

  使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

  教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

  教学过程:

  一、创设情境、导入新课。

  多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

  师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  生:会计算长方形面积,不会计算平行四边形的面积。

  师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

  [设计意图]:

  是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。

  二、探究平行四边形的面积。

  1. 用数方格的方法探索计算面积。

  师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

  生1:我想把平行四边形拉成一个长方形。

  生2:我想用数方格子的方法来计算。

  ……

  师:

  (1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

  (2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

  说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。

  同桌合作完成:

  4. 汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

  平行四边形

  底

  高

  面积

  长方形

  长

  宽

  面积

  通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  [设计意图]:

  通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。

  2. 推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

  生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

  师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

  (3)分组合作动手操作,探索图形的转化。

  各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。

  生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

  引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

  用多媒体演示平移和拼的过程。剪——平移——拼。

  [设计意图]:

  通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。

  (4)小组讨论,合作交流,探索平行四边形的面积计算公式。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论后,根据学生回答情况出示讨论题目给学生。

  拼出的长方形和原来的平行四边形相比,面积变了没有?

  拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  [设计意图]:

  创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。

  (5)小组交流汇报,归纳叙述出自己的推导过程。

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

  因为:长方形的面积=长×宽,

  所以:平行四边形的面积=底×高

  如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

  学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

  3、平行四边形面积计算公式的应用。

  既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

  (1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

  生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

  (2)运用平行四边形面积计算公式让学生自学例1

  师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

  学生板书例1的结果;s=ah=6×4=24(平方米)

  [设计意图]:

  在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。

  三、巩固拓展。

  1、给下面各题目填空。

  (1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。

  (2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。

  (3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。

  [设计意图]:

  通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。

  2、你能想办法求出下面两个平行四边形的面积吗?

  3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

  [设计意图]:

  这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。

  四、课堂总结

  通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

  请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

  板书

  长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示是:S=a×h= a·h= ah